Du, Lele; Gao, Fashun; Yang, Minbo On elliptic equations with Stein-Weiss type convolution parts. (English) Zbl 07525070 Math. Z. 301, No. 2, 2185-2225 (2022). MSC: 35J15 35J20 35B06 35B65 PDF BibTeX XML Cite \textit{L. Du} et al., Math. Z. 301, No. 2, 2185--2225 (2022; Zbl 07525070) Full Text: DOI OpenURL
Gao, Fashun; Liu, Haidong; Moroz, Vitaly; Yang, Minbo High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1465.35176 J. Differ. Equations 287, 329-375 (2021). MSC: 35J47 35J91 35B09 35A02 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Differ. Equations 287, 329--375 (2021; Zbl 1465.35176) Full Text: DOI arXiv OpenURL
Ding, Yanheng; Gao, Fashun; Yang, Minbo Semiclassical states for Choquard type equations with critical growth: critical frequency case. (English) Zbl 1454.35085 Nonlinearity 33, No. 12, 6695-6728 (2020). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Ding} et al., Nonlinearity 33, No. 12, 6695--6728 (2020; Zbl 1454.35085) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Luo, Huxiao; Yang, Minbo Ground state solutions for a class of strongly indefinite Choquard equations. (English) Zbl 1440.35126 Bull. Malays. Math. Sci. Soc. (2) 43, No. 4, 3271-3304 (2020). MSC: 35J61 35J50 58E30 35A01 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 4, 3271--3304 (2020; Zbl 1440.35126) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo; Zhou, Jiazheng Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. (English) Zbl 1437.35295 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020; Zbl 1437.35295) Full Text: DOI OpenURL
Gao, Fashun; Da Silva, Edcarlos D.; Yang, Minbo; Zhou, Jiazheng Existence of solutions for critical Choquard equations via the concentration-compactness method. (English) Zbl 1437.35213 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921-954 (2020). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921--954 (2020; Zbl 1437.35213) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo; Santos, Carlos Alberto; Zhou, Jiazheng Infinitely many solutions for a class of critical Choquard equation with zero mass. (English) Zbl 1433.35035 Topol. Methods Nonlinear Anal. 54, No. 1, 219-232 (2019). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Topol. Methods Nonlinear Anal. 54, No. 1, 219--232 (2019; Zbl 1433.35035) Full Text: DOI Euclid OpenURL
Li, Shuoshuo; Shen, Zifei; Yang, Minbo Multiplicity of solutions for a nonlocal nonhomogeneous elliptic equation with critical exponential growth. (English) Zbl 1418.35108 J. Math. Anal. Appl. 475, No. 2, 1685-1713 (2019). MSC: 35J15 35A01 35A15 PDF BibTeX XML Cite \textit{S. Li} et al., J. Math. Anal. Appl. 475, No. 2, 1685--1713 (2019; Zbl 1418.35108) Full Text: DOI OpenURL
Shen, Zifei; Gao, Fashun; Yang, Minbo On critical Choquard equation with potential well. (English) Zbl 1398.35064 Discrete Contin. Dyn. Syst. 38, No. 7, 3567-3593 (2018). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{Z. Shen} et al., Discrete Contin. Dyn. Syst. 38, No. 7, 3567--3593 (2018; Zbl 1398.35064) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. (English) Zbl 1397.35087 Sci. China, Math. 61, No. 7, 1219-1242 (2018). MSC: 35J25 35J60 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, Sci. China, Math. 61, No. 7, 1219--1242 (2018; Zbl 1397.35087) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality. (English) Zbl 1391.35126 Commun. Contemp. Math. 20, No. 4, Article ID 1750037, 22 p. (2018). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, Commun. Contemp. Math. 20, No. 4, Article ID 1750037, 22 p. (2018; Zbl 1391.35126) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1357.35106 J. Math. Anal. Appl. 448, No. 2, 1006-1041 (2017). MSC: 35J20 35B33 PDF BibTeX XML Cite \textit{F. Gao} and \textit{M. Yang}, J. Math. Anal. Appl. 448, No. 2, 1006--1041 (2017; Zbl 1357.35106) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M.; Yang, Minbo Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. (English) Zbl 1354.35029 Adv. Nonlinear Anal. 5, No. 4, 331-345 (2016). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Adv. Nonlinear Anal. 5, No. 4, 331--345 (2016; Zbl 1354.35029) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Nóbrega, Alânnio B.; Yang, Minbo Multi-bump solutions for Choquard equation with deepening potential well. (English) Zbl 1347.35097 Calc. Var. Partial Differ. Equ. 55, No. 3, Paper No. 48, 28 p. (2016). Reviewer: Huansong Zhou (Wuhan) MSC: 35J20 35J65 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Calc. Var. Partial Differ. Equ. 55, No. 3, Paper No. 48, 28 p. (2016; Zbl 1347.35097) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Cassani, Daniele; Tarsi, Cristina; Yang, Minbo Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb R^2\). (English) Zbl 1347.35096 J. Differ. Equations 261, No. 3, 1933-1972 (2016). Reviewer: Petr Tomiczek (Plzeň) MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{C. O. Alves} et al., J. Differ. Equations 261, No. 3, 1933--1972 (2016; Zbl 1347.35096) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Figueiredo, Giovany M.; Yang, Minbo Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. (English) Zbl 1339.35278 Asymptotic Anal. 96, No. 2, 135-159 (2016). MSC: 35Q55 35A15 58E05 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Asymptotic Anal. 96, No. 2, 135--159 (2016; Zbl 1339.35278) Full Text: DOI OpenURL
Alves, Claudianor O.; Yang, Minbo Existence of semiclassical ground state solutions for a generalized Choquard equation. (English) Zbl 1309.35036 J. Differ. Equations 257, No. 11, 4133-4164 (2014). Reviewer: Junichi Aramaki (Saitama) MSC: 35J92 35A15 35J50 35J60 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{M. Yang}, J. Differ. Equations 257, No. 11, 4133--4164 (2014; Zbl 1309.35036) Full Text: DOI OpenURL
Alves, Claudianor O.; Yang, Minbo Multiplicity and concentration of solutions for a quasilinear Choquard equation. (English) Zbl 1293.35352 J. Math. Phys. 55, No. 6, 061502, 21 p. (2014). MSC: 35R09 35A15 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{M. Yang}, J. Math. Phys. 55, No. 6, 061502, 21 p. (2014; Zbl 1293.35352) Full Text: DOI OpenURL
Yang, Minbo; Wei, Yuanhong Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. (English) Zbl 1294.35149 J. Math. Anal. Appl. 403, No. 2, 680-694 (2013). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35A15 PDF BibTeX XML Cite \textit{M. Yang} and \textit{Y. Wei}, J. Math. Anal. Appl. 403, No. 2, 680--694 (2013; Zbl 1294.35149) Full Text: DOI OpenURL
Yang, Minbo; Zhao, Fukun; Ding, Yanheng On the existence of solutions for Schrödinger-Maxwell systems in \(R^3\). (English) Zbl 1253.35166 Rocky Mt. J. Math. 42, No. 5, 1655-1674 (2012). MSC: 35Q55 35Q61 35J20 35J60 PDF BibTeX XML Cite \textit{M. Yang} et al., Rocky Mt. J. Math. 42, No. 5, 1655--1674 (2012; Zbl 1253.35166) Full Text: DOI Euclid OpenURL