×

Computation of compaction in compressible granular material. (English) Zbl 1258.76177

Summary: Equations modeling compaction in a mixture of granular high explosive and interstitial gas are solved numerically. Both phases are modeled as compressible, viscous fluids. This overcomes well known difficulties associated with computing shock jumps in the inviscid version of the equations, which cannot be posed in a fully conservative form. One-dimensional shock tube and piston-driven compaction solutions compare favorably with experiment and known analytic solutions. A simple two-dimensional extension is presented.

MSC:

76T25 Granular flows
74E20 Granularity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R.; Saurel, R.: Discrete equations for physical and numerical compressible mixtures, Journal of computational physics 186, 361-396 (2003) · Zbl 1072.76594 · doi:10.1016/S0021-9991(03)00011-1
[2] Baer, M. R.: Numerical studies of dynamic compaction of inert and energetic granular materials, Journal of applied mechanics 55, 36 (1986)
[3] Baer, M. R.; Nunziato, J. W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International journal of multiphase flow 12, 861-886 (1986) · Zbl 0609.76114 · doi:10.1016/0301-9322(86)90033-9
[4] Bdzil, J. B.; Menikoff, R.; Son, S. F.; Kapila, A. K.; Stewart, D. S.: Two-phase modeling of deflagration-to-detonation transition in granular material: A critical examination of modeling issues, Physics of fluids 11, 378-402 (1999) · Zbl 1147.76317 · doi:10.1063/1.869887
[5] Cochran, M.T., 2007. Two-dimensional viscous compaction in compressible granular materials. MS Thesis, University of Notre Dame.
[6] COMSOL, 2003. FEMBLAB, User’s Guide and Introduction.
[7] Gonthier, K. A.: Predictions for weak mechanical ignition of strain hardened granular explosive, Journal of applied physics 95, 3482-3494 (2004)
[8] Gonthier, K. A.; Powers, J. M.: A high resolution numerical method for a two-phase model of deflagration-to-detonation transition, Journal of computational physics 163, 376-433 (2000) · Zbl 0995.76062 · doi:10.1006/jcph.2000.6569
[9] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S.: Two-phase modeling of deflagration-to-detonation transition in granular material: reduced equations, Physics of fluids 13, 3002-3024 (2001) · Zbl 1184.76268 · doi:10.1063/1.1398042
[10] Lowe, C. A.; Greenaway, M. W.: Compaction processes in granular beds composed of different particle sizes, Journal of applied physics 98, 547 (2005)
[11] Lowe, C. A.; Longbottom, A. W.: Effect of particle distribution on the compaction behavior of granular beds, Physics of fluids 18, 066101 (2006)
[12] Papalexandris, M. V.: A two-phase model for compressible granular flows based on the theory of irreversible processes, Journal of fluid mechanics 517, 103-112 (2005) · Zbl 1063.76102 · doi:10.1017/S0022112004000874
[13] Powers, J. M.: Two-phase viscous modeling of compaction of granular materials, Physics of fluids 16, 2975-2990 (2004) · Zbl 1186.76430 · doi:10.1063/1.1764951
[14] Powers, J. M.: Review of multiscale modeling of detonation, Journal of propulsion and power 22, 1217-1229 (2006)
[15] Powers, J. M.; Stewart, D. S.; Krier, H.: Analysis of steady copaction waves in porous materials, Journal of applied mechanics 56, 15 (1989)
[16] Powers, J. M.; Stewart, D. S.; Krier, H.: Theory of two-phase detonation-part I: Modeling, Combustion and flame 80, 264 (1990)
[17] Sandusky, H.W., Bernecker, R.R., 1985. Compressive reaction in porous beds of energetic materials. Naval Surface Weapons Center Eighth Detonation Symposium.
[18] Sandusky, H. W.; Liddiard, T. P.: Dynamic compaction of porous beds, Naval surface weapons center report, 83-256 (1985)
[19] Schewendeman, D. W.; Wahle, C. W.; Kapila, A. K.: The reimann problem and a high-resolution Godunov method for a model of compressible two-phase flow, Journal of computational physics 212, 490-526 (2006) · Zbl 1161.76531 · doi:10.1016/j.jcp.2005.07.012
[20] Tiselj, I.; Petelin, S.: Modelling of two-phase flow with second-order scheme, Journal of computational physics 136, 503-521 (1997) · Zbl 0918.76050 · doi:10.1006/jcph.1997.5778
[21] Vreman, A. W.: Macroscopic theory of multicomponent flows: irreversibility and well-posed equations, Physica D: Nonlinear phenomena 225, 94-111 (2007) · Zbl 1111.35041 · doi:10.1016/j.physd.2006.10.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.