×

A high order method for numerical solution of time-fractional KdV equation by radial basis functions. (English) Zbl 06989346

Summary: A radial basis function method for solving time-fractional KdV equation is presented. The Caputo derivative is approximated by the high order formulas introduced in Buhman (Proc. Edinb. Math. Soc. 36:319-333, 1993). By choosing the centers of radial basis functions as collocation points, in each time step a nonlinear system of algebraic equations is obtained. A fixed point predictor-corrector method for solving the system is introduced. The efficiency and accuracy of our method are demonstrated through several illustrative examples. By the examples, the experimental convergence order is approximately \(4-\alpha \), where \(\alpha \) is the order of time derivative.

MSC:

65D05 Numerical interpolation
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdulaziz, O.; Hashim, I.; Ismail, ES, Approximate analytical solution to fractional modified KdV equations, Math. Comput. Model., 49, 36-45, (2009) · Zbl 1165.35441 · doi:10.1016/j.mcm.2008.01.005
[2] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless method: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47, (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[3] Belytschko, T.; Lu, Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229-256, (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[4] Buhman, MD, Spectral convergence of multiquadratic interpolation, Proc. Edinb. Math. Soc., 36, 319-333, (1993) · Zbl 0791.41002 · doi:10.1017/S0013091500018411
[5] Carlson, RE; Foley, TA, The parameter \(r^2\) in multiquadratic interpolation, Comput. Math. Appl., 21, 29-42, (1991) · Zbl 0725.65009 · doi:10.1016/0898-1221(91)90123-L
[6] Cao, JX; Li, CP; Chen, YQ, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II), Fract. Calcul. Appl. Anal., 18, 735-761, (2015) · Zbl 1325.65121
[7] Chen, W.; Le, Y.; Sun, H., Fractional diffusion equation by the Kansa method, Comput. Math. Appl., 59, 1614-1620, (2010) · Zbl 1189.35356 · doi:10.1016/j.camwa.2009.08.004
[8] Cheng, R.; Cheng, Y., Error estimates for the finite point method, Appl. Numer. Math., 58, 884-898, (2008) · Zbl 1145.65086 · doi:10.1016/j.apnum.2007.04.003
[9] Cheng, Y.; Peng, M., Boundary element-free method for elastodynamics, Sci. China Ser. G, 48, 641-657, (2005) · doi:10.1360/142004-25
[10] Coffey, MW, Nonlinear dynamics of vortices in ultraclean type-II superconductors: integrable wave equations in cylindrical geometry, Phys. Rev. B., 54, 1270-1285, (1996) · doi:10.1103/PhysRevB.54.1279
[11] Dehghan, M.; Shokri, A., A numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230, 400-410, (2009) · Zbl 1168.65398 · doi:10.1016/j.cam.2008.12.011
[12] Duarte, M.; Oden, JT, An \(h-p\) adaptive method using clouds, Comput. Methods Appl. Mech. Eng., 139, 237-262, (1996) · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[13] El-Ajou, A.; Abu Arqub, O.; Momani, S., Approximate analytical solution of the nonlinear fractional KdV-Burgers equation, J. Comut. Phys., 293, 81-95, (2015) · Zbl 1349.65546 · doi:10.1016/j.jcp.2014.08.004
[14] Fausshauer, G.E.: Approximate moving least-square approximation with compactly supported radial weights. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 105-116. Springer, New York (2002)
[15] Gu, YT; Zhuang, P.; Liu, F., An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation, Comput. Model. Eng. Sci., 56, 303-334, (2010) · Zbl 1231.65178
[16] Han, WM; Meng, XP, Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Eng., 190, 6157-6181, (2001) · Zbl 0992.65119 · doi:10.1016/S0045-7825(01)00214-6
[17] Korteweg-de Vries, DJ; de Vries, G., On the change in form of long waves advancing in rectangular canal and on a new type of long stationary waves, Philos. Mag., 39, 422-443, (1895) · JFM 26.0881.02 · doi:10.1080/14786449508620739
[18] Kurulay, M.; Bayram, M., Approximate analytical solution for the fractional modified KdV by differential transform method, Commun. Nonlinear Sci. Numer. Simul., 15, 1777-1782, (2010) · Zbl 1222.35172 · doi:10.1016/j.cnsns.2009.07.014
[19] Li, X., Meshless numerical analysis of a class of nonlinear generalized Klein-Gordon equations with a well-posed moving least squares approximation, Appl. Math. Model., 47, 45-62, (2017) · doi:10.1016/j.apm.2017.03.019
[20] Li, X.; Chen, H.; Wang, Y., Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method, Appl. Math. Comput., 262, 56-78, (2015) · Zbl 1410.65456
[21] Li, X.; Zhang, S.; Wang, Y.; Chen, H., Analysis and application of the element-free Galerkin method for nonlinear Sine-Gordon and generalized Sinh-Gordon equations, Comput. Math. Appl., 71, 1655-1678, (2016) · doi:10.1016/j.camwa.2016.03.007
[22] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552, (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[23] Liu, WK; Han, WM, Reproducing Kernel element method. Part I: theoretical information, Comput. Methods Appl. Mech. Eng., 193, 933-951, (2004) · Zbl 1060.74670 · doi:10.1016/j.cma.2003.12.001
[24] Liu, Q.; Gu, YT; Zhuang, P.; Liu, F.; Nie, YF, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech., 48, 1-12, (2011) · Zbl 1377.76025 · doi:10.1007/s00466-011-0573-x
[25] Ludu, A.; Draayer, JP, Nonlinear modes of liquid drops as solitary waves, Phys. Rev. Lett., 80, 2125-2128, (1998) · doi:10.1103/PhysRevLett.80.2125
[26] Melenk, JM; Babuska, I., The partition of unity method: basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289-314, (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[27] Mohebbi, A.; Abbaszadeh, M.; Dehghan, M., The use of meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrodinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem., 37, 475-485, (2013) · Zbl 1352.65397 · doi:10.1016/j.enganabound.2012.12.002
[28] Momani, S., An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70, 110-118, (2005) · Zbl 1119.65394 · doi:10.1016/j.matcom.2005.05.001
[29] Momani, S.; Odibat, Z.; Alawneh, A., Variational iteration method for solving the space- and the time-fractional KdV equation, Numer. Methods Partial Differ. Equ., 24, 262-271, (2008) · Zbl 1130.65132 · doi:10.1002/num.20247
[30] Piret, C.; Hanert, E., A radial basis functions method for fractional diffusion equations, J. Comput. Phys., 238, 71-81, (2013) · Zbl 1286.65135 · doi:10.1016/j.jcp.2012.10.041
[31] Quarteroni, A.: Riccardo Sacco and Fausto Saleri Numerical Mathematics. Springer, Berlin (2000)
[32] Reatto, L.; Galli, D., What is a ROTON?, Int. J. Mod. Phys. B., 13, 607-616, (1999) · doi:10.1142/S0217979299000497
[33] Sahoo, S.; Saha Ray, S., Solitary wave solution for time fractional third order modified KdV equation using two reliable techniques (G’/G)-expansion method and improved (G’/G)-expansion method, Phys. A Stat. Mech. Appl., 448, 265-282, (2016) · Zbl 1400.35204 · doi:10.1016/j.physa.2015.12.072
[34] Schoenberg, IJ, Metric spaces and completely monotone functions, Ann. Math., 39, 811-841, (1938) · Zbl 0019.41503 · doi:10.2307/1968466
[35] Song, L.; Zhang, HQ, Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equations, Phys. Lett. A, 367, 88-94, (2007) · Zbl 1209.65115 · doi:10.1016/j.physleta.2007.02.083
[36] Tatari, M.; Sepehrian, B.; Alibakhshi, M., New implementation of radial basis functions for solving Burgers’-Fisher equation, Numer. Methods Partial Differ. Equ., 28, 248-262, (2012) · Zbl 1252.65176 · doi:10.1002/num.20617
[37] Turitsyn, S.; Aceves, A.; Jones, C.; Zharnitsky, V., Average dynamics of the optical soliton in communication lines with dispersion management: analytical results, Phys. Rev. E., 58, r48-r51, (1998) · doi:10.1103/PhysRevE.58.R48
[38] Wang, Q., Homotopy perturbation method for fractional KdV equation, Appl. Math. Comput., 190, 1795-1802, (2007) · Zbl 1122.65397
[39] Wang, Q., Numerical solutions of the space and time fractional KdV-Burgers’ equation by Adomian decomposition method, Appl. Math. Comput., 182, 1048-1055, (2006) · Zbl 1107.65124
[40] Wang, JG; Liu, GR, A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Eng., 54, 1623-1648, (2002) · Zbl 1098.74741 · doi:10.1002/nme.489
[41] Zorzano, MP; Mais, H.; Vazquez, L., Numerical solution of two dimensional Fokker-Planck equations, Appl. Math. Comput., 98, 109-117, (1999) · Zbl 1083.82526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.