Cui, X. X.; Xiao, W. What is the effect of the Weyl fractional integral on the Hölder continuous functions? (English) Zbl 07465357 Fractals 29, No. 1, Article ID 2150026, 7 p. (2021). MSC: 26A33 28A78 PDF BibTeX XML Cite \textit{X. X. Cui} and \textit{W. Xiao}, Fractals 29, No. 1, Article ID 2150026, 7 p. (2021; Zbl 07465357) Full Text: DOI OpenURL
Chang, Yen-Ching An efficient maximum likelihood estimator for two-dimensional fractional Brownian motion. (English) Zbl 07465356 Fractals 29, No. 1, Article ID 2150025, 15 p. (2021). MSC: 62-XX PDF BibTeX XML Cite \textit{Y.-C. Chang}, Fractals 29, No. 1, Article ID 2150025, 15 p. (2021; Zbl 07465356) Full Text: DOI OpenURL
He, Ji-Huan On the fractal variational principle for the telegraph equation. (English) Zbl 1482.35005 Fractals 29, No. 1, Article ID 2150022, 5 p. (2021). MSC: 35A15 35A08 35R02 35R11 28A80 PDF BibTeX XML Cite \textit{J.-H. He}, Fractals 29, No. 1, Article ID 2150022, 5 p. (2021; Zbl 1482.35005) Full Text: DOI OpenURL
Ali, Zeeshan; Rabiei, Faranak; Shah, Kamal; Khodadadi, Touraj Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia. (English) Zbl 07465353 Fractals 29, No. 1, Article ID 2150020, 14 p. (2021). MSC: 34C60 34A08 92C60 92D30 34A45 34D10 PDF BibTeX XML Cite \textit{Z. Ali} et al., Fractals 29, No. 1, Article ID 2150020, 14 p. (2021; Zbl 07465353) Full Text: DOI OpenURL
Elías-Zúñiga, Alex; Palacios-Pineda, Luis Manuel; Jiménez-Cedeño, Isaac H.; Martínez-Romero, Oscar; Olvera Trejo, Daniel Equivalent power-form transformation for fractal Bratu’s equation. (English) Zbl 07465352 Fractals 29, No. 1, Article ID 2150019, 8 p. (2021). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{A. Elías-Zúñiga} et al., Fractals 29, No. 1, Article ID 2150019, 8 p. (2021; Zbl 07465352) Full Text: DOI OpenURL
Navarro, Jose Carlos; Rossi, Julio D. On max-min mean value formulas on the Sierpinski gasket. (English) Zbl 07465351 Fractals 29, No. 1, Article ID 2150018, 14 p. (2021). MSC: 28A80 PDF BibTeX XML Cite \textit{J. C. Navarro} and \textit{J. D. Rossi}, Fractals 29, No. 1, Article ID 2150018, 14 p. (2021; Zbl 07465351) Full Text: DOI OpenURL
Xiao, Boqi; Huang, Qiwen; Chen, Hanxin; Chen, Xubing; Long, Gongbo A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. (English) Zbl 07465350 Fractals 29, No. 1, Article ID 2150017, 10 p. (2021). MSC: 76-XX 86-XX PDF BibTeX XML Cite \textit{B. Xiao} et al., Fractals 29, No. 1, Article ID 2150017, 10 p. (2021; Zbl 07465350) Full Text: DOI OpenURL
López, Álvaro G. Dynamics in fractal spaces. (English) Zbl 07465349 Fractals 29, No. 1, Article ID 2150016, 21 p. (2021). MSC: 37A50 60G65 28A80 PDF BibTeX XML Cite \textit{Á. G. López}, Fractals 29, No. 1, Article ID 2150016, 21 p. (2021; Zbl 07465349) Full Text: DOI arXiv OpenURL
Liang, Y. S.; Wang, H. X. Upper box dimension of Riemann-Liouville fractional integral of fractal functions. (English) Zbl 07465348 Fractals 29, No. 1, Article ID 2150015, 8 p. (2021). MSC: 28A78 26A33 PDF BibTeX XML Cite \textit{Y. S. Liang} and \textit{H. X. Wang}, Fractals 29, No. 1, Article ID 2150015, 8 p. (2021; Zbl 07465348) Full Text: DOI OpenURL
Zhao, Lingzhi; Huang, Chengdai; Cao, Jinde Dynamics of fractional-order predator-prey model incorporating two delays. (English) Zbl 07465347 Fractals 29, No. 1, Article ID 2150014, 14 p. (2021). MSC: 34K60 34K37 34K21 34K20 34K18 34K13 PDF BibTeX XML Cite \textit{L. Zhao} et al., Fractals 29, No. 1, Article ID 2150014, 14 p. (2021; Zbl 07465347) Full Text: DOI OpenURL
Téllez-Sánchez, G. Y.; Bory-Reyes, J. Extensions of the Shannon entropy and the chaos game algorithm to hyperbolic numbers plane. (English) Zbl 07465346 Fractals 29, No. 1, Article ID 2150013, 8 p. (2021). MSC: 60A05 60A10 28D20 46S10 94A17 PDF BibTeX XML Cite \textit{G. Y. Téllez-Sánchez} and \textit{J. Bory-Reyes}, Fractals 29, No. 1, Article ID 2150013, 8 p. (2021; Zbl 07465346) Full Text: DOI arXiv OpenURL
Jin, Ting; Yang, Xiangfeng; Xia, Hongxuan; Ding, Hui Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type. (English) Zbl 1482.91204 Fractals 29, No. 1, Article ID 2150012, 21 p. (2021). MSC: 91G20 91G80 35Q91 35R11 PDF BibTeX XML Cite \textit{T. Jin} et al., Fractals 29, No. 1, Article ID 2150012, 21 p. (2021; Zbl 1482.91204) Full Text: DOI OpenURL
Feng, Yiying; Yang, Xiao-Jun; Liu, Jian-Gen; Chen, Zhan-Qing New perspective aimed at local fractional order memristor model on Cantor sets. (English) Zbl 07465344 Fractals 29, No. 1, Article ID 2150011, 6 p. (2021). MSC: 94Cxx 68-XX 26A33 PDF BibTeX XML Cite \textit{Y. Feng} et al., Fractals 29, No. 1, Article ID 2150011, 6 p. (2021; Zbl 07465344) Full Text: DOI OpenURL
Zafar, Zain Ul Abadin; Shah, Zahir; Ali, Nigar; Alzahrani, Ebraheem O.; Shutaywi, Meshal Mathematical and stability analysis of fractional order model for spread of pests in tea plants. (English) Zbl 07465341 Fractals 29, No. 1, Article ID 2150008, 14 p. (2021). MSC: 34C60 34A08 92D45 34C05 34D20 34D05 PDF BibTeX XML Cite \textit{Z. U. A. Zafar} et al., Fractals 29, No. 1, Article ID 2150008, 14 p. (2021; Zbl 07465341) Full Text: DOI OpenURL
Sun, Wenbing Local fractional Ostrowski-type inequalities involving generalized \(h\)-convex functions and some applications for generalized moments. (English) Zbl 07465339 Fractals 29, No. 1, Article ID 2150006, 12 p. (2021). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{W. Sun}, Fractals 29, No. 1, Article ID 2150006, 12 p. (2021; Zbl 07465339) Full Text: DOI OpenURL
Luo, Jun; Yao, Xiao-Ting A note on topology of fractal squares with order three. (English) Zbl 07465338 Fractals 29, No. 1, Article ID 2150005, 11 p. (2021). MSC: 28A80 37C15 PDF BibTeX XML Cite \textit{J. Luo} and \textit{X.-T. Yao}, Fractals 29, No. 1, Article ID 2150005, 11 p. (2021; Zbl 07465338) Full Text: DOI OpenURL
Khan, Yasir Maclaurin series method for fractal differential-difference models arising in coupled nonlinear optical waveguides. (English) Zbl 1481.78012 Fractals 29, No. 1, Article ID 2150004, 7 p. (2021). MSC: 78A50 78A40 28A80 45D05 39A36 PDF BibTeX XML Cite \textit{Y. Khan}, Fractals 29, No. 1, Article ID 2150004, 7 p. (2021; Zbl 1481.78012) Full Text: DOI OpenURL
Su, Haibo; Zhang, Yidan; Xiao, Boqi; Huang, Xiaoming; Yu, Boming A fractal-Monte Carlo approach to model oil and water two-phase seepage in low-permeability reservoirs with rough surfaces. (English) Zbl 07465336 Fractals 29, No. 1, Article ID 2150003, 13 p. (2021). MSC: 76-XX 86-XX PDF BibTeX XML Cite \textit{H. Su} et al., Fractals 29, No. 1, Article ID 2150003, 13 p. (2021; Zbl 07465336) Full Text: DOI OpenURL
Yu, Dakuan; Ta, Wurui A new stable internal structure of the Mandelbrot set during the iteration process. (English) Zbl 07465335 Fractals 29, No. 1, Article ID 2150002, 12 p. (2021). MSC: 37F10 37F46 28A80 PDF BibTeX XML Cite \textit{D. Yu} and \textit{W. Ta}, Fractals 29, No. 1, Article ID 2150002, 12 p. (2021; Zbl 07465335) Full Text: DOI OpenURL
Ali, Amjad; Shah, Kamal; Alrabaiah, Hussam; Shah, Zahir; Ur Rahman, Ghaus; Islam, Saeed Computational modeling and theoretical analysis of nonlinear fractional order prey-predator system. (English) Zbl 07465334 Fractals 29, No. 1, Article ID 2150001, 14 p. (2021). MSC: 34C60 34A08 92D25 37C60 34A45 44A10 47N20 PDF BibTeX XML Cite \textit{A. Ali} et al., Fractals 29, No. 1, Article ID 2150001, 14 p. (2021; Zbl 07465334) Full Text: DOI OpenURL