×

Existence results for coupled nonlinear fractional differential equations of different orders with nonlocal coupled boundary conditions. (English) Zbl 1504.34006

Summary: This paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
47N20 Applications of operator theory to differential and integral equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fallahgoul, H. A.; Focardi, S. M.; Fabozzi, F. J., Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application (2017), London: Elsevier, London · Zbl 1381.60001
[2] Javidi, M.; Ahmad, B., Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318, 8-18 (2015) · doi:10.1016/j.ecolmodel.2015.06.016
[3] Ding, Y.; Wang, Z.; Ye, H., Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Control Syst. Technol., 20, 763-769 (2012) · doi:10.1109/TCST.2011.2153203
[4] Xu, Y.; Li, W., Finite-time synchronization of fractional-order complex-valued coupled systems, Physica A, 549 (2020) · Zbl 07572656 · doi:10.1016/j.physa.2019.123903
[5] Zhang, F.; Chen, G.; Li, C.; Kurths, J., Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. A, 371 (2013) · Zbl 1342.34070
[6] Srivastava, H. M., Remarks on some families of fractional-order differential equations, Integral Transforms Spec. Funct., 28, 560-564 (2017) · Zbl 1375.26019 · doi:10.1080/10652469.2017.1317248
[7] Ming, Z.; Zhang, G.; Li, H., Positive solutions of a derivative dependent second-order problem subject to Stieltjes integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2019 (2019) · Zbl 1458.65135 · doi:10.1186/s13662-019-2034-3
[8] Appell, J.; Lopez, B.; Sadarangani, K., Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives, J. Nonlinear Var. Anal., 2, 25-33 (2018) · Zbl 1462.47050 · doi:10.23952/jnva.2.2018.1.03
[9] Khan, H.; Tunc, C.; Chen, W.; Khan, A., Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8, 4, 1211-1226 (2018) · Zbl 1461.34009
[10] Wang, Y.; Liang, S.; Wang, Q., Existence results for fractional differential equations with integral and multi-point boundary conditions, Bound. Value Probl., 2018 (2018) · Zbl 1386.34016 · doi:10.1186/s13661-017-0924-4
[11] Cen, Z.; Liu, L.-B.; Huang, J., A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett., 102 (2020) · Zbl 1524.65276 · doi:10.1016/j.aml.2019.106086
[12] Iskenderoglu, G.; Kaya, D., Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense, Chaos Solitons Fractals, 134 (2020) · Zbl 1483.35319 · doi:10.1016/j.chaos.2020.109684
[13] Goodrich, C. S., Coercive nonlocal elements in fractional differential equations, Positivity, 21, 377-394 (2017) · Zbl 1367.26017 · doi:10.1007/s11117-016-0427-z
[14] Ahmad, B.; Alruwaily, Y.; Alsaedi, A.; Nieto, J. J., Fractional integro-differential equations with dual anti-periodic boundary conditions, Differ. Integral Equ., 33, 181-206 (2020) · Zbl 1488.45023
[15] Alsaedi, A.; Broom, A.; Ntouyas, S. K.; Ahmad, B., Existence results and the dimension of the solution set for a nonlocal inclusions problem with mixed fractional derivatives and integrals, J. Nonlinear Funct. Anal., 2020 (2020)
[16] Khan, H.; Tunc, C.; Khan, A., Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\phi_P^*\)-operator, J. Appl. Anal. Comput., 10, 584-597 (2020) · Zbl 1464.34103
[17] Kamenskii, M.; Petrosyan, G.; Wen, C. F., An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space, J. Nonlinear Var. Anal., 5, 155-177 (2021) · Zbl 1493.34168 · doi:10.23952/jnva.5.2021.1.10
[18] Ben-Avraham, D.; Havlin, S., Diffusion and Reactions in Fractals and Disordered Systems (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 1075.82001 · doi:10.1017/CBO9780511605826
[19] Deshpande, A. S.; Daftardar-Gejji, V., On disappearance of chaos in fractional systems, Chaos Solitons Fractals, 102, 119-126 (2017) · Zbl 1374.34309 · doi:10.1016/j.chaos.2017.04.046
[20] Wang, S.; Xu, M., Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal., Real World Appl., 10, 1087-1096 (2009) · Zbl 1167.76311 · doi:10.1016/j.nonrwa.2007.11.027
[21] Wang, J. R.; Zhang, Y., Analysis of fractional order differential coupled systems, Math. Methods Appl. Sci., 38, 3322-3338 (2015) · Zbl 1336.34020 · doi:10.1002/mma.3298
[22] Ahmad, B.; Alghamdi, N.; Alsaedi, A.; Ntouyas, S. K., A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions, Fract. Calc. Appl. Anal., 22, 601-618 (2019) · Zbl 1428.34006 · doi:10.1515/fca-2019-0034
[23] Ahmad, B.; Alsaedi, A.; Ntouyas, S. K., Nonlinear coupled fractional order systems with integro-multistrip-multipoint boundary conditions, Int. J. Anal. Appl., 17, 940-957 (2019)
[24] Ahmad, B.; Alsaedi, A.; Ntouyas, S. K., Fractional order nonlinear mixed coupled systems with coupled integro-differential boundary conditions, J. Appl. Anal. Comput., 10, 892-903 (2020) · Zbl 1468.34005
[25] Ahmad, B.; Alsaedi, A.; Alruwaily, Y.; Ntouyas, S. K., Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Math., 5, 1446-1461 (2020) · Zbl 1484.34007 · doi:10.3934/math.2020099
[26] Henderson, J.; Luca, R.; Tudorache, A., On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18, 361-386 (2015) · Zbl 1315.34012 · doi:10.1515/fca-2015-0024
[27] Ntouyas, S. K.; Al-Sulami, H. H., A study of coupled systems of mixed order fractional differential equations and inclusions with coupled integral fractional boundary conditions, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.34031 · doi:10.1186/s13662-020-2539-9
[28] Ahmad, B.; Alghanmi, M.; Alsaedi, A., Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mt. J. Math., 50, 1901-1922 (2020) · Zbl 1462.34009 · doi:10.1216/rmj.2020.50.1901
[29] Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Nieto, J. J., Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021) · Zbl 1466.34005 · doi:10.1016/j.aml.2021.107018
[30] Harikrishnan, S.; Ibrahim, R. W.; Kanagarajan, K., On the generalized Ulam-Hyers-Rassias stability for coupled fractional differential equations, Commun. Optim. Theory, 2018 (2018)
[31] Khan, H.; Tunc, C.; Khan, A., Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations, Discrete Contin. Dyn. Syst., Ser. S, 13, 2475-2487 (2020) · Zbl 1457.34116
[32] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., On fully coupled nonlocal multi-point boundary value problems of nonlinear mixed-order fractional differential equations on an arbitrary domain, Filomat, 32, 4503-4511 (2018) · Zbl 1499.34019 · doi:10.2298/FIL1813503A
[33] Ahmad, B.; Hamdan, S.; Alsaedi, A.; Ntouyas, S. K., On a nonlinear mixed-order coupled fractional differential system with new integral boundary conditions, AIMS Math., 6, 6, 5801-5816 (2021) · Zbl 1484.34009 · doi:10.3934/math.2021343
[34] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[35] Granas, A.; Dugundji, J., Fixed Point Theory (2003), New York: Springer, New York · Zbl 1025.47002 · doi:10.1007/978-0-387-21593-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.