×

A fractional-order fall armyworm-maize biomass model with naturally beneficial insects and optimal farming awareness. (English) Zbl 1480.92237

Summary: Maize remains an important food crop in Africa. However, the production of this crop, and consequently the livelihood of the growers are threatened by the invasion and widespread infestation of the fall armyworm which causes substantial maize yield losses. In this paper, a fractional-order fall armyworm-maize biomass model with naturally beneficial insects and optimal farming awareness has been formulated. Comprehensive analysis of the model has shown that it contains five equilibrium points which are all locally and globally asymptotically stable if the conditions outlined in Lemma 2.1 and 2.2 are met. We also carried out numerical simulations to support the analytical results and to illustrate different dynamical regimes that can be observed in the model. We have found that time-dependent farming awareness can significantly reduce fall armyworm population if the cost of implementation is relatively low.

MSC:

92D45 Pest management
34A08 Fractional ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34D23 Global stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dercon, S.; Gollin, D., Agriculture in African development: theories and strategies, Annu Rev Resour Econ, 6, 1, 471-492 (2014)
[2] Kassie, M.; Wossen, T.; De Groote, H.; Tefera, T.; Sevgan, S.; Balew, S., Economic impacts of fall armyworm and its management strategies: evidence from southern Ethiopia, Eur Rev Agric Econ, 47, 4, 1473-1501 (2020)
[3] Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; Gomez, J., Fall armyworm: impacts and implications for Africa, Outlooks Pest Manage, 28, 5, 196-201 (2017)
[4] Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T., Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya, Int J Pest Manage, 65, 1, 1-9 (2019)
[5] Baudron, F.; Zaman-Allah, M. A.; Chaipa, I.; Chari, N.; Chinwada, P., Understanding the factors influencing fall armyworm (Spodoptera frugiperda JE Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe, Crop Prot, 120, 141-150 (2019)
[6] Sisay, B.; Simiyu, J.; Mendesil, E.; Likhayo, P.; Ayalew, G.; Mohamed, S.; Subramanian, S.; Tefera, T., Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism, Insects, 10, 7, 195 (2019)
[7] Rukundo, P.; Karangwa, P.; Uzayisenga, B.; Ingabire, J. P.; Waweru, B. W.; Kajuga, J.; Bizimana, J. P., Outbreak of fall armyworm (Spodoptera frugiperda) and its impact in rwanda agriculture production, (Sustainable management of invasive pests in Africa (2020)), 139-157
[8] Matova, P. M.; Kamutando, C. N.; Magorokosho, C.; Kutywayo, D.; Gutsa, F.; Labuschagne, M., Fall-armyworm invasion, control practices and resistance breeding in Sub-Saharan Africa, Crop Sci, 60, 6, 2951-2970 (2020)
[9] Attaullah; Sohaib, M., Mathematical modeling and numerical simulation of HIV infection model, Results Appl Math, 7, Article 100118 pp. (2020) · Zbl 1471.65068
[10] Abraha, T.; Al Basir, F.; Obsu, L. L.; Torres, D. F., Pest control using farming awareness: Impact of time delays and optimal use of biopesticides, Chaos Solitons Fractals, 146, Article 110869 pp. (2021) · Zbl 1498.92316
[11] Collinson, S.; Heffernan, J. M., Modelling the effects of media during an influenza epidemic, BMC Public Health, 14, 1, 1-10 (2014)
[12] Liu, X.; Chen, L., Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos Solitons Fractals, 16, 2, 311-320 (2003) · Zbl 1085.34529
[13] Zhang, Y.; Liu, B.; Chen, L., Extinction and permanence of a two-prey one-predator system with impulsive effect, Math Med Biol, 20, 4, 309-325 (2003) · Zbl 1046.92051
[14] Zhang, H.; Georgescu, P.; Chen, L., An impulsive predator-prey system with Beddington-Deangelis functional response and time delay, Int J Biomath, 1, 01, 1-17 (2008) · Zbl 1155.92045
[15] Attaullah; Hussain, S.; Syeda, M. B., Numerical solution of the model for HIV infection of CD4+ T-cells, Lap Lambert Acad Publ, 4, 2, 1-76 (2016)
[16] Jatav, K. S.; Dhar, J.; Nagar, A. K., Mathematical study of stage-structured pests control through impulsively released natural enemies with discrete and distributed delays, Appl Math Comput, 238, 511-526 (2014) · Zbl 1334.92345
[17] Lu, Z.; Chi, X.; Chen, L., Impulsive control strategies in biological control of pesticide, Theor Popul Biol, 64, 1, 39-47 (2003) · Zbl 1100.92071
[18] Liu, B.; Teng, Z.; Chen, L., The effect of impulsive spraying pesticide on stage-structured population models with birth pulse, J Biol Systems, 13, 01, 31-44 (2005) · Zbl 1125.92320
[19] Kang, B.; He, M.; Liu, B., Optimal control of agricultural insects with a stage-structured model, Math Probl Eng, 2013 (2013) · Zbl 1296.34125
[20] Guilie, J. G.L. Q.L., Impulsive control of a stage-structured pest management system, J Math Study, 04 (2003) · Zbl 1042.92030
[21] Li, J.; Huang, Q.; Liu, B., A pest control model with birth pulse and residual and delay effects of pesticides, Adv Difference Equ, 2019, 1, 1-16 (2019) · Zbl 1459.92158
[22] Daudi, S.; Luboobi, L.; Kgosimore, M.; Kuznetsov, D.; Mushayabasa, S., A mathematical model for fall armyworm management on maize biomass, Adv Difference Equ, 2021, 1, 1-27 (2021)
[23] Attaullah; Jan, R.; Yüzbaşı, Ş., Dynamical behaviour of HIV infection with the influence of variable source term through Galerkin method, Chaos Solitons Fractals, 152, Article 111429 pp. (2021) · Zbl 1498.92053
[24] Wei, C. Y., Study of the dynamics of a pest model with birth pulse (2012), Shaanxi Normal University: Shaanxi Normal University Shaanxi, 2012
[25] Attaullah; Rashid, J., Solution of the hiv infection model with full logistic proliferation and variable source term using Galerkin scheme, Matrix Sci Math, 4, 2, 37-43 (2020)
[26] Caputo, M., Linear models of dissipation whose q is almost frequency independent. II, Fract Calc Appl Anal, 11, 1, 4-14 (2008), reprinted from Geophys. J. R. Astr. Soc. 13 (1967), no. 5, 529-539 · Zbl 1210.65130
[27] Liu, S.; Huang, M.; Wang, J., Bifurcation control of a delayed fractional mosaic disease model for jatropha curcas with farming awareness, Complexity, 2020 (2020) · Zbl 1441.92042
[28] Assefa, F.; Ayalew, D., Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review, Cogent Food Agric, 5, 1, Article 1641902 pp. (2019)
[29] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[30] Ahmed, E.; El-Sayed, A.; El-Saka, H. A., Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J Math Anal Appl, 325, 1, 542-553 (2007) · Zbl 1105.65122
[31] Allen, L. J.S., An introduction to mathematical biology, 368 (2007), Prentice Hall: Prentice Hall Upper Saddle River, NJ, USA
[32] Pontryagin, L. S.; Boltyanskii, V. T.; Gamkrelidze, R. V.; Mishcheuko, F., The mathematical theory of optimal processes (1962), Wiley: Wiley New Jersey · Zbl 0102.32001
[33] Lenhart, S.; Workman, J. T., Optimal control applied to biological models (2007), Chapman and Hall/CRC: Chapman and Hall/CRC London · Zbl 1291.92010
[34] Trade reforms and food security: Conceptualizing the linkages (2003), Food and Agriculture Organization: Food and Agriculture Organization Rome, (Accessed September 2020)
[35] Daudi, S.; Luboobi, L.; Kgosimore, M.; Kuznetsov, D.; Mushayabasa, S., A mathematical model for fall armyworm management on maize biomass, Adv Difference Equ, 2021, 1, 1-27 (2021)
[36] Kandel, S.; Poudel, R., Fall armyworm (spodoptera frugiperda) in maize: An emerging threat in Nepal and its management, Int J Appl Sci Biotechnol, 8, 3, 305-309 (2020)
[37] Hui, J.; Zhu, D., Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects, Chaos Solitons Fractals, 29, 1, 233-251 (2006) · Zbl 1095.92067
[38] Rafikov, M.; Balthazar, J. M.; d Von Bremen, H. F., Mathematical modeling and control of population systems: applications in biological pest control, Appl Math Comput, 200, 557-573 (2008) · Zbl 1139.92022
[39] Bai, D.; Yu, J.; Fan, M.; Kang, K., Dynamics for a non-autonomous predator-prey system with generalist predator, J Math Anal Appl, 485 (2020) · Zbl 1443.92148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.