A coupled mass transport and deformation theory of multi-constituent tumor growth. (English) Zbl 1477.74032

Summary: We develop a general class of thermodynamically consistent, continuum models based on mixture theory with phase effects that describe the behavior of a mass of multiple interacting constituents. The constituents consist of solid species undergoing large elastic deformations and incompressible viscous fluids. The fundamental building blocks framing the mixture theories consist of the mass balance law of diffusing species and microscopic (cellular scale) and macroscopic (tissue scale) force balances, as well as energy balance and the entropy production inequality derived from the first and second laws of thermodynamics. A general phase-field framework is developed by closing the system through postulating constitutive equations (i.e., specific forms of free energy and rate of dissipation potentials) to depict the growth of tumors in a microenvironment. A notable feature of this theory is that it contains a unified continuum mechanics framework for addressing the interactions of multiple species evolving in both space and time and involved in biological growth of soft tissues (e.g., tumor cells and nutrients). The formulation also accounts for the regulating roles of the mechanical deformation on the growth of tumors, through a physically and mathematically consistent coupled diffusion and deformation framework. A new algorithm for numerical approximation of the proposed model using mixed finite elements is presented. The results of numerical experiments indicate that the proposed theory captures critical features of avascular tumor growth in the various microenvironment of living tissue, in agreement with the experimental studies in the literature.


74F20 Mixture effects in solid mechanics
92C15 Developmental biology, pattern formation
Full Text: DOI


[1] Abdollahi, B.; Dunlap, N.; Frieboes, H. B., Bridging the gap between modeling of tumor growth and clinical imaging, Abdomen and Thoracic Imaging, 463-487 (2014), Springer
[2] Adam, J. A., General aspects of modeling tumor growth and immune response, A Survey of Models for Tumor-Immune System Dynamics, 15-87 (1997), Springer
[3] Alessandri, K.; Sarangi, B. R.; Gurchenkov, V. V.; Sinha, B.; Kießling, T. R.; Fetler, L.; Rico, F.; Scheuring, S.; Lamaze, C.; Simon, A., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proc. Natl. Acad. Sci., 110, 37, 14843-14848 (2013)
[4] Ambrosi, D.; Ateshian, G.; Arruda, E.; Cowin, S.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J.; Kemkemer, R.; Kuhl, E.; Olberding, J.; Taberk, L.; Garikipati, K., Perspectives on biological growth and remodeling, J. Mech. Phys. Solids, 59, 4, 863-883 (2011) · Zbl 1270.74134
[5] Ambrosi, D.; Guillou, A.; Di Martino, E., Stress-modulated remodeling of a non-homogeneous body, J. Biomech., 39, S315 (2006)
[6] Ambrosi, D.; Mollica, F., On the mechanics of a growing tumor, Int. J. Eng. Sci., 40, 12, 1297-1316 (2002) · Zbl 1211.74161
[7] Ambrosi, D.; Mollica, F., The role of stress in the growth of a multicell spheroid, J. Math. Biol., 48, 5, 477-499 (2004) · Zbl 1058.92005
[8] Ambrosi, D.; Preziosi, L., On the closure of mass balance models for tumor growth, Math. Models Methods Appl. Sci., 12, 05, 737-754 (2002) · Zbl 1016.92016
[9] Anderson, A. R.A.; Chaplain, M. A.J., Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60, 5, 857-899 (1998) · Zbl 0923.92011
[10] Araujo, R. P.; McElwain, D., A linear-elastic model of anisotropic tumour growth, Eur. J. Appl. Math., 15, 3, 365-384 (2004) · Zbl 1057.92034
[11] Araujo, R. P.; McElwain, D., The nature of the stresses induced during tissue growth, Appl. Math. Lett., 18, 10, 1081-1088 (2005) · Zbl 1079.74515
[12] Araujo, R. P.; McElwain, D. S., A history of the study of solid tumour growth: the contribution of mathematical modelling, Bull. Math. Biol., 66, 5, 1039 (2004) · Zbl 1334.92187
[13] Araujo, R. P.; McElwain, D. S., A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation, SIAM J. Appl. Math., 65, 4, 1261-1284 (2005) · Zbl 1074.74043
[14] Araujo, R. P.; McElwain, D. S., A mixture theory for the genesis of residual stresses in growing tissues ii: solutions to the biphasic equations for a multicell spheroid, SIAM J. Appl. Math., 66, 2, 447-467 (2005) · Zbl 1130.74311
[15] Armstrong, N. J.; Painter, K. J.; Sherratt, J. A., A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., 243, 1, 98-113 (2006)
[16] Aslan, O.; Cordero, N.; Gaubert, A.; Forest, S., Micromorphic approach to single crystal plasticity and damage, Int. J. Eng. Sci., 49, 12, 1311-1325 (2011) · Zbl 1423.74195
[17] Astanin, S.; Preziosi, L., Multiphase models of tumour growth, Selected Topics in Cancer Modeling, 1-31 (2008), Springer
[18] Ateshian, G. A., On the theory of reactive mixtures for modeling biological growth, Biomech. Model. Mechanobiol., 6, 6, 423-445 (2007)
[19] Athale, C.; Mansury, Y.; Deisboeck, T. S., Simulating the impact of a molecular ‘decision-process’ on cellular phenotype and multicellular patterns in brain tumors, J. Theor. Biol., 233, 4, 469-481 (2005)
[20] Bedford, A.; Drumheller, D., A variational theory of immiscible mixtures, Arch. Ration. Mech. Anal., 68, 1, 37-51 (1978) · Zbl 0391.76012
[21] Bilston, L. E.; Liu, Z.; Phan-Thien, N., Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model, Biorheology, 38, 4, 335-345 (2001)
[22] Boettinger, W. J.; Warren, J. A.; Beckermann, C.; Karma, A., Phase-field simulation of solidification, Annu. Rev. Mater. Res., 32, 1, 163-194 (2002)
[23] Bowen, R. M., Theory of mixtures, Contin. Phys., 3, 2-129 (1976)
[24] Bowen, R. M., Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 18, 9, 1129-1148 (1980) · Zbl 0446.73005
[25] Breward, C.; Byrne, H.; Lewis, C., The role of cell-cell interactions in a two-phase model for avascular tumour growth, J. Math. Biol., 45, 2, 125-152 (2002) · Zbl 1012.92017
[26] Butcher, D. T.; Alliston, T.; Weaver, V. M., A tense situation: forcing tumour progression, Nat. Rev. Cancer, 9, 2, 108 (2009)
[27] Buttenschoen, A.; Hillen, T.; Gerisch, A.; Painter, K. J., A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis, J. Math. Biol., 76, 1-2, 429-456 (2018) · Zbl 1392.92012
[28] Byrne, H. M.; King, J. R.; McElwain, D. S.; Preziosi, L., A two-phase model of solid tumour growth, Appl. Math. Lett., 16, 4, 567-573 (2003) · Zbl 1040.92015
[29] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 2, 258-267 (1958) · Zbl 1431.35066
[30] Cheng, G.; Tse, J.; Jain, R. K.; Munn, L. L., Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PLoS One, 4, 2, e4632 (2009)
[31] Cheng, S.; Clarke, E. C.; Bilston, L. E., Rheological properties of the tissues of the central nervous system: a review, Med. Eng. Phys., 30, 10, 1318-1337 (2008)
[32] Choksi, R.; Peletier, M. A.; Williams, J., On the phase diagram for microphase separation of Diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional, SIAM J. Appl. Math., 69, 6, 1712-1738 (2009) · Zbl 1400.74089
[33] Cloots, R.; Van Dommelen, J.; Nyberg, T.; Kleiven, S.; Geers, M., Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy, Biomech. Model. Mechanobiol., 10, 3, 413-422 (2011)
[34] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 1, 167-178 (1963) · Zbl 0113.17802
[35] Cristini, V.; Li, X.; Lowengrub, J. S.; Wise, S. M., Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, J. Math. Biol., 58, 4, 723 (2008) · Zbl 1311.92039
[36] Dai, M.; Feireisl, E.; Rocca, E.; Schimperna, G.; Schonbek, M. E., Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30, 4, 1639 (2017) · Zbl 1367.35185
[37] De Boer, R., Trends in Continuum Mechanics of Porous Media, 18 (2006), Springer Science & Business Media
[38] De Boer, R., Theory of Porous Media: Highlights in Historical Development and Current State (2012), Springer Science & Business Media
[39] Demou, Z. N., Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential, Ann. Biomed. Eng., 38, 11, 3509-3520 (2010)
[40] Dziwnik, M.; Münch, A.; Wagner, B., An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit, Nonlinearity, 30, 4, 1465 (2017) · Zbl 1404.76025
[41] Eringen, A. C.; Ingram, J. D., A continuum theory of chemically reacting media-I, Int. J. Eng. Sci., 3, 2, 197-212 (1965)
[42] Faghihi, D., Oden, J.T., Feng, X., Lima, E.A.B.F., Hormuth II, D.A., Yankeelov, T.E., 2018. A Phase-Field Theory for Multi-constituent Diffusion and Deformation: Application to Avascular Tumor Growth, ICES REPORT 18-09, The Institute for Computational Engineering and Sciences, The University of Texas at Austin.
[43] Faghihi, D.; Voyiadjis, G. Z., A thermodynamic consistent model for coupled strain-gradient plasticity with temperature, J. Eng. Mater. Technol., 136, 1, 011002 (2014)
[44] Forest, S., Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech., 135, 3, 117-131 (2009)
[45] Fraldi, M.; Carotenuto, A. R., Cells competition in tumor growth poroelasticity, J. Mech. Phys. Solids, 112, 345-367 (2018)
[46] Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G. A., Brain tissue deforms similarly to filled elastomers and follows consolidation theory, J. Mech. Phys. Solids, 54, 12, 2592-2620 (2006) · Zbl 1162.74303
[47] Franks, S.; King, J., Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties, Math. Med. Biol., 20, 1, 47-89 (2003) · Zbl 1044.92032
[48] Frieboes, H. B.; Lowengrub, J. S.; Wise, S.; Zheng, X.; Macklin, P.; Bearer, E. L.; Cristini, V., Computer simulation of glioma growth and morphology, Neuroimage, 37, S59-S70 (2007)
[49] Fried, E.; Gurtin, M. E., A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy, Adv. Appl. Mech., 40, 1-177 (2004)
[50] Fried, E.; Gurtin, M. E., Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment, J. Stat. Phys., 95, 5, 1361-1427 (1999) · Zbl 0952.74053
[51] Friedl, P.; Wolf, K., Tumour-cell invasion and migration: diversity and escape mechanisms, Nat. Rev. Cancer, 3, 5, 362 (2003)
[52] Fung, Y.-C., Biomechanics: Mechanical Properties of Living Tissues (2013), Springer Science & Business Media
[53] Garcke, H.; Lam, K. F.; Sitka, E.; Styles, V., A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26, 06, 1095-1148 (2016) · Zbl 1336.92038
[54] Garg, I.; Miga, M. I., Preliminary investigation of the inhibitory effects of mechanical stress in tumor growth, Proceedings of the 2008 SPIE, 6918, L69182 (2008)
[55] Garikipati, K., The kinematics of biological growth, Appl. Mech. Rev., 62, 3, 030801 (2009)
[56] Garikipati, K.; Arruda, E.; Grosh, K.; Narayanan, H.; Calve, S., A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics, J. Mech. Phys. Solids, 52, 7, 1595-1625 (2004) · Zbl 1159.74381
[57] Germain, P., The method of virtual power in continuum mechanics. Part 2: microstructure, SIAM J. Appl. Math., 25, 3, 556-575 (1973) · Zbl 0273.73061
[58] Goodman, M.; Cowin, S., A continuum theory for granular materials, Arch. Ration. Mech. Anal., 44, 4, 249-266 (1972) · Zbl 0243.76005
[59] Goriely, A.; Amar, M. B., On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity, Biomech. Model. Mechanobiol., 6, 5, 289-296 (2007)
[60] Graziano, L.; Preziosi, L., Mechanics in tumor growth, (Mollica, F.; Preziosi, L.; Rajagopal, K. R., Modeling of Biological Materials (2007), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 263-321
[61] van der Gun, B. T.; Melchers, L. J.; Ruiters, M. H.; de Leij, L. F.; McLaughlin, P. M.; Rots, M. G., EPCAM in carcinogenesis: the good, the bad or the ugly, Carcinogenesis, 31, 11, 1913-1921 (2010)
[62] Gurtin, M. E., Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 3-4, 178-192 (1996) · Zbl 0885.35121
[63] Gurtin, M. E., A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, 50, 1, 5-32 (2002) · Zbl 1043.74007
[64] Gurtin, M. E.; Anand, L., A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations, J. Mech. Phys. Solids, 53, 7, 1624-1649 (2005) · Zbl 1120.74353
[65] Gurtin, M. E.; Anand, L., A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. part ii: finite deformations, Int. J. Plast., 21, 12, 2297-2318 (2005) · Zbl 1101.74316
[66] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge University Press
[67] Gurtin, M. E.; Guidugli, P. P., The thermodynamics of constrained materials, Arch. Ration. Mech. Anal., 51, 3, 192-208 (1973) · Zbl 0263.73004
[68] Gurtin, M. E.; McFadden, G. B., On the Evolution of Phase Boundaries, 43 (2012), Springer Science & Business Media
[69] Gurtin, M. E.; Williams, W. O., On the Clausius-Duhem inequality, Z. Angew. Math. Phys. (ZAMP), 17, 5, 626-633 (1966)
[70] Gurtin, M. E.; Williams, W. O., An axiomatic foundation for continuum thermodynamics, Arch. Ration. Mech. Anal., 26, 2, 83-117 (1967) · Zbl 0144.48302
[71] Hawkins-Daarud, A.; van der Zee, K. G.; Tinsley Oden, J., Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Method Biomed. Eng., 28, 1, 3-24 (2012) · Zbl 1242.92030
[72] Helmlinger, G.; Netti, P. A.; Lichtenbeld, H. C.; Melder, R. J.; Jain, R. K., Solid stress inhibits the growth of multicellular tumor spheroids, Nat. Biotechnol., 15, 8, 778-783 (1997)
[73] Himpel, G.; Kuhl, E.; Menzel, A.; Steinmann, P., Computational modelling of isotropic multiplicative growth, Comp. Mod. Eng. Sci., 8, 119-134 (2005) · Zbl 1188.74059
[74] Hormuth, D. A.; Weis, J. A.; Barnes, S. L.; Miga, M. I.; Rericha, E. C.; Quaranta, V.; Yankeelov, T. E., A mechanically coupled reaction-diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth, J. R. Soc. Interface, 14, 128 (2017)
[75] Hrapko, M.; Van Dommelen, J.; Peters, G.; Wismans, J., The mechanical behaviour of brain tissue: large strain response and constitutive modelling, Biorheology, 43, 5, 623-636 (2006)
[76] Humphrey, J.; Rajagopal, K., A constrained mixture model for growth and remodeling of soft tissues, Math. Models Methods Appl. Sci., 12, 03, 407-430 (2002) · Zbl 1021.74026
[77] Ingram, J. D.; Eringen, A. C., A continuum theory of chemically reacting media-II constitutive equations of reacting fluid mixtures, Int. J. Eng. Sci., 5, 4, 289-322 (1967)
[78] Jain, R. K.; Martin, J. D.; Stylianopoulos, T., The role of mechanical forces in tumor growth and therapy, Annu. Rev. Biomed. Eng., 16, 321-346 (2014)
[79] Janet, M. T.; Cheng, G.; Tyrrell, J. A.; Wilcox-Adelman, S. A.; Boucher, Y.; Jain, R. K.; Munn, L. L., Mechanical compression drives cancer cells toward invasive phenotype, Proc. Natl. Acad. Sci., 109, 3, 911-916 (2012)
[80] Jarrett, A. M.; Lima, E. A.B. F.; Hormuth, D. A.; McKenna, M. T.; Feng, X.; Ekrut, D. A.; Resende, A. C.M.; Brock, A.; Yankeelov, T. E., Mathematical models of tumor cell proliferation: a review of the literature, Exp. Rev. Anticancer Ther., 18, 12, 1271-1286 (2018)
[81] Jenkins, J., Static equilibrium of granular materials, J. Appl. Mech., 42, 3, 603-606 (1975)
[82] Jiang, Y.; Pjesivac-Grbovic, J.; Cantrell, C.; Freyer, J. P., A multiscale model for avascular tumor growth, Biophys. J., 89, 6, 3884-3894 (2005)
[83] Joseph, D. D.; Renardy, Y. Y., Fundamentals of two-fluid dynamics: Part i: Mathematical theory and applications(Vol. 3), Springer Science & Business Media (2013)
[84] Karagiannis, G. S.; Poutahidis, T.; Erdman, S. E.; Kirsch, R.; Riddell, R. H.; Diamandis, E. P., Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue, Mol. Cancer Res., 10, 11, 1403-1418 (2012)
[85] Kaufman, L.; Brangwynne, C.; Kasza, K.; Filippidi, E.; Gordon, V. D.; Deisboeck, T.; Weitz, D., Glioma expansion in collagen i matrices: analyzing collagen concentration-dependent growth and motility patterns, Biophys. J., 89, 1, 635-650 (2005)
[86] Knowles, J.; Jakub, M., Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity, Arch. Ration. Mech. Anal., 18, 5, 367-378 (1965) · Zbl 0128.42101
[87] Koike, C.; McKee, T.; Pluen, A.; Ramanujan, S.; Burton, K.; Munn, L.; Boucher, Y.; Jain, R., Solid stress facilitates spheroid formation: potential involvement of hyaluronan, Br. J. Cancer, 86, 6, 947 (2002)
[88] Laird, A. K., Dynamics of tumour growth, Br. J. Cancer, 18, 3, 490 (1964)
[89] Lee, A. A.; Münch, A.; Süli, E., Degenerate mobilities in phase field models are insufficient to capture surface diffusion, Appl. Phys. Lett., 107, 8, 081603 (2015)
[90] Lee, A. A.; Munch, A.; Suli, E., Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Appl. Math., 76, 2, 433-456 (2016) · Zbl 1343.35129
[91] Levental, K. R.; Yu, H.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T.; Fong, S. F.; Csiszar, K.; Giaccia, A.; Weninger, W., Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, 139, 5, 891-906 (2009)
[92] Li, B.; Cao, Y.-P.; Feng, X.-Q.; Gao, H., Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment, J. Mech. Phys. Solids, 59, 4, 758-774 (2011)
[93] Li, B.; Cao, Y.-P.; Feng, X.-Q.; Gao, H., Mechanics of morphological instabilities and surface wrinkling in soft materials: a review, Soft Matter, 8, 21, 5728-5745 (2012)
[94] Lima, E. A.B. F.; Almeida, R. C.; Oden, J. T., Analysis and numerical solution of stochastic phase-field models of tumor growth, Numer. Methods Part. Differ. Equ., 31, 2, 552-574 (2015) · Zbl 1326.92041
[95] Lima, E. A.B. F.; Ghousifam, N.; Ozkan, A.; Oden, J. T.; Shahmoradi, A.; Rylander, M.; Wohlmuth, B.; Yankeelov, T., Calibration of multi-parameter models of avascular tumor growth using time resolved microscopy data, Sci. Rep., 8, 1, 14558 (2018)
[96] Lima, E. A.B. F.; Oden, J. T.; Almeida, R. C., A hybrid ten-species phase-field model of tumor growth, Math. Models Methods Appl. Sci., 24, 13, 2569-2599 (2014) · Zbl 1404.35459
[97] Lima, E. A.B. F.; Oden, J. T.; Hormuth, D. A.; Yankeelov, T. E.; Almeida, R. C., Selection, calibration, and validation of models of tumor growth, Math. Models Methods Appl. Sci., 26, 12, 2341-2368 (2016) · Zbl 1349.92075
[98] Liu, J., Thermodynamically Consistent Modeling and Simulation of Multiphase Flows (2014), The University of Texas at Austin
[99] Liu, J.; Gomez, H.; Evans, J. A.; Hughes, T. J.; Landis, C. M., Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations, J. Comput. Phys., 248, 47-86 (2013) · Zbl 1349.76237
[100] Liu, J.; Landis, C. M.; Gomez, H.; Hughes, T. J., Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations, Comput. Methods Appl. Mech. Eng., 297, 476-553 (2015) · Zbl 1423.76456
[101] Lorenzo, G.; Hughes, T. J.; Dominguez-Frojan, P.; Reali, A.; Gomez, H., Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth, Proc. Natl. Acad. Sci., 116, 4, 1152-1161 (2019)
[102] Lubarda, V. A.; Hoger, A., On the mechanics of solids with a growing mass, Int. J. Solids Struct., 39, 18, 4627-4664 (2002) · Zbl 1045.74035
[103] Macklin, P.; Edgerton, M. E., Agent-based cell modeling: application to breast cancer, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, 206-234 (2010), Cambridge University Press
[104] Macklin, P.; Frieboes, H. B.; Sparks, J. L.; Ghaffarizadeh, A.; Friedman, S. H.; Juarez, E. F.; Jonckheere, E.; Mumenthaler, S. M., Progress towards computational 3-D multicellular systems biology, Systems Biology of Tumor Microenvironment, 225-246 (2016), Springer
[105] Madireddy, S.; Sista, B.; Vemaganti, K., Bayesian calibration of hyperelastic constitutive models of soft tissue, J. Mech. Behav. Biomed. Mater., 59, 108-127 (2016)
[106] Mascheroni, P.; Stigliano, C.; Carfagna, M.; Boso, D. P.; Preziosi, L.; Decuzzi, P.; Schrefler, B. A., Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model, Biomech. Model. Mechanobiol., 15, 5, 1215-1228 (2016)
[107] Mihai, L. A.; Chin, L.; Janmey, P. A.; Goriely, A., A comparison of hyperelastic constitutive models applicable to brain and fat tissues, J. R. Soc. Interface, 12, 110 (2015)
[108] Mills, K. L.; Garikipati, K.; Kemkemer, R., Experimental characterization of tumor spheroids for studies of the energetics of tumor growth, Int. J. Mater. Res., 102, 7, 889-895 (2011)
[109] Mills, K. L.; Kemkemer, R.; Rudraraju, S.; Garikipati, K., Elastic free energy drives the shape of prevascular solid tumors, PLoS One, 9, 7, e103245 (2014)
[110] Mills, K. L., Kemkemer, R., Rudraraju, S., Garikipati, K., 2015. Tumor Growth in Agarose and Collagen-Agarose Co-Gels. Book of Abstracts-Extract, 25.
[111] Mills, K.; Rudraraju, S.; Kemkemer, R.; Garikipati, K., Continuum physics of tumor growth, Cell and Matrix Mechanics, 309 (2014), CRC Press
[112] Moelans, N.; Wendler, F.; Nestler, B., Comparative study of two phase-field models for grain growth, Comput. Mater. Sci., 46, 2, 479-490 (2009)
[113] Montel, F.; Delarue, M.; Elgeti, J.; Malaquin, L.; Basan, M.; Risler, T.; Cabane, B.; Vignjevic, D.; Prost, J.; Cappello, G., Stress clamp experiments on multicellular tumor spheroids, Phys. Rev. Lett., 107, 18, 188102 (2011)
[114] Montel, F.; Delarue, M.; Elgeti, J.; Vignjevic, D.; Cappello, G.; Prost, J., Isotropic stress reduces cell proliferation in tumor spheroids, New J. Phys., 14, 5, 055008 (2012)
[115] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 9, 582-592 (1940) · JFM 66.1021.04
[116] Narayanan, H.; Arruda, E.; Grosh, K.; Garikipati, K., The micromechanics of fluid-solid interactions during growth in porous soft biological tissue, Biomech. Model. Mechanobiol., 8, 3, 167 (2009)
[117] Narayanan, H.; Verner, S.; Mills, K. L.; Kemkemer, R.; Garikipati, K., In silico estimates of the free energy rates in growing tumor spheroids, J. Phys.: Condens. Matter, 22, 19, 194122 (2010)
[118] Nunziato, J. W.; Walsh, E. K., On ideal multiphase mixtures with chemical reactions and diffusion, Arch. Ration. Mech. Anal., 73, 4, 285-311 (1980) · Zbl 0453.76092
[119] Oden, J. T.; Demkowicz, L., Applied Functional Analysis (2010), Chapman and Hall/CRC · Zbl 1200.46001
[120] Oden, J. T.; Hawkins, A.; Prudhomme, S., General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 03, 477-517 (2010) · Zbl 1186.92024
[121] Oden, J. T.; Lima, E. A.B. F.; Almeida, R. C.; Feng, Y.; Rylander, M. N.; Fuentes, D.; Faghihi, D.; Rahman, M. M.; DeWitt, M.; Gadde, M., Toward predictive multiscale modeling of vascular tumor growth, Arch. Comput. Methods Eng., 23, 4, 735-779 (2016) · Zbl 1360.92059
[122] Ogden, R. W., Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A, 326, 1567, 565-584 (1972) · Zbl 0257.73034
[123] Ogden, R. W., Non-Linear Elastic Deformations (1997), Courier Corporation
[124] Padera, T. P.; Stoll, B. R.; Tooredman, J. B.; Capen, D.; di Tomaso, E.; Jain, R. K., Pathology: cancer cells compress intratumour vessels, Nature, 427, 6976, 695 (2004)
[125] Papastavrou, A.; Steinmann, P.; Kuhl, E., On the mechanics of continua with boundary energies and growing surfaces, J. Mech. Phys. Solids, 61, 6, 1446-1463 (2013)
[126] Passman, S. L.; Nunziato, J. W.; Walsh, E. K., A theory of multiphase mixtures, Rational Thermodynamics, 286-325 (1984), Springer
[127] Paszek, M. J.; Zahir, N.; Johnson, K. R.; Lakins, J. N.; Rozenberg, G. I.; Gefen, A.; Reinhart-King, C. A.; Margulies, S. S.; Dembo, M.; Boettiger, D., Tensional homeostasis and the malignant phenotype, Cancer Cell, 8, 3, 241-254 (2005)
[128] Paweletz, N.; Knierim, M., Tumor-related angiogenesis, Crit. Rev. Oncol. Hematol., 9, 3, 197-242 (1989)
[129] Pennacchietti, S.; Michieli, P.; Galluzzo, M.; Mazzone, M.; Giordano, S.; Comoglio, P. M., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene, Cancer Cell, 3, 4, 347-361 (2003)
[130] Prevost, T. P.; Balakrishnan, A.; Suresh, S.; Socrate, S., Biomechanics of brain tissue, Acta Biomater., 7, 1, 83-95 (2011)
[131] Quaranta, V.; Weaver, A. M.; Cummings, P. T.; Anderson, A. R., Mathematical modeling of cancer: the future of prognosis and treatment, Clin. Chim. Acta, 357, 2, 173-179 (2005)
[132] Rajagopal, K. R.; Tao, L., Mechanics of Mixtures, 35 (1995), World Scientific · Zbl 0941.74500
[133] Raman, F.; Scribner, E.; Saut, O.; Wenger, C.; Colin, T.; Fathallah-Shaykh, H. M., Computational trials: unraveling motility phenotypes, progression patterns, and treatment options for glioblastoma multiforme, PLoS One, 11, 1, e0146617 (2016)
[134] Rivlin, R., Large elastic deformations of isotropic materials IV. Further developments of the general theory, Philso. Trans. R. Soc. Lond. A, 241, 835, 379-397 (1948) · Zbl 0031.42602
[135] Rocha, H. L.; Almeida, R. C.; Lima, E. A.B. F.; Resende, A. C.M.; Oden, J. T.; Yankeelov, T. E., A hybrid three-scale model of tumor growth, Math. Models Methods Appl. Sci., 28, 01, 61-93 (2018) · Zbl 1381.92051
[136] Rodriguez, E. K.; Hoger, A.; McCulloch, A. D., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 4, 455-467 (1994)
[137] de Rooij, R.; Kuhl, E., Constitutive modeling of brain tissue: current perspectives, Appl. Mech. Rev., 68, 1, 010801 (2016)
[138] Roose, T.; Chapman, S. J.; Maini, P. K., Mathematical models of avascular tumor growth, SIAM Rev., 49, 2, 179-208 (2007) · Zbl 1117.93011
[139] Roose, T.; Netti, P. A.; Munn, L. L.; Boucher, Y.; Jain, R. K., Solid stress generated by spheroid growth estimated using a linear poroelasticity model, Microvasc. Res., 66, 3, 204-212 (2003)
[140] Rudraraju, S.; Mills, K. L.; Kemkemer, R.; Garikipati, K., Multiphysics modeling of reactions, mass transport and mechanics of tumor growth, Computer Models in Biomechanics, 293-303 (2013), Springer
[141] Sarntinoranont, M.; Rooney, F.; Ferrari, M., Interstitial stress and fluid pressure within a growing tumor, Ann. Biomed. Eng., 31, 3, 327-335 (2003)
[142] Sherratt, J. A.; Gourley, S. A.; Armstrong, N. J.; Painter, K. J., Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion, Eur. J. Appl. Math., 20, 1, 123-144 (2009) · Zbl 1194.35219
[143] Skalak, R., Growth as a finite displacement field, Proceedings of the IUTAM Symposium on Finite Elasticity, 347-355 (1981), Springer
[144] Skalak, R.; Dasgupta, G.; Moss, M.; Otten, E.; Dullemeijer, P.; Vilmann, H., Analytical description of growth, J. Theor. Biol., 94, 3, 555-577 (1982)
[145] Skalak, R.; Zargaryan, S.; Jain, R. K.; Netti, P. A.; Hoger, A., Compatibility and the genesis of residual stress by volumetric growth, J. Math. Biol., 34, 8, 889-914 (1996) · Zbl 0858.92005
[146] Stefanescu, D. M., Thermodynamic concepts-equilibrium and nonequilibrium during solidification, Science and Engineering of Casting Solidification, 7-27 (2015), Springer
[147] Stylianopoulos, T.; Martin, J. D.; Chauhan, V. P.; Jain, S. R.; Diop-Frimpong, B.; Bardeesy, N.; Smith, B. L.; Ferrone, C. R.; Hornicek, F. J.; Boucher, Y., Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors, Proc. Natl. Acad. Sci., 109, 38, 15101-15108 (2012)
[148] Stylianopoulos, T.; Martin, J. D.; Snuderl, M.; Mpekris, F.; Jain, S. R.; Jain, R. K., Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse, Cancer Res., 73, 13, 3833-3841 (2013)
[149] Sutherland, R. M., Cell and environment interactions in tumor microregions: the multicell spheroid model, Science, 240, 4849, 177-184 (1988)
[150] Swanson, K. R.; Bridge, C.; Murray, J.; Alvord, E. C., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216, 1, 1-10 (2003)
[151] Taber, L. A., Biomechanics of growth, remodeling, and morphogenesis, Evolution, 490, 6 (1995)
[152] Truesdell, C., Mechanical basis of diffusion, J. Chem. Phys., 37, 10, 2336-2344 (1962)
[153] Truesdell, C.; Noll, W.; Pipkin, A., The non-linear field theories of mechanics, J. Appl. Mech., 33, 958 (1966)
[154] Truesdell, C.; Toupin, R., The classical field theories, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, 226-858 (1960), Springer
[155] Turner, S.; Sherratt, J. A., Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model, J. Theor. Biol., 216, 1, 85-100 (2002)
[156] Ubachs, R.; Schreurs, P.; Geers, M., A nonlocal diffuse interface model for microstructure evolution of tin-lead solder, J. Mech. Phys. Solids, 52, 8, 1763-1792 (2004) · Zbl 1062.74515
[157] Voutouri, C.; Mpekris, F.; Papageorgis, P.; Odysseos, A. D.; Stylianopoulos, T., Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors, PLoS One, 9, 8, e104717 (2014)
[158] Voyiadjis, G. Z.; Faghihi, D., Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, Int. J. Plast., 30, Suppl C, 218-247 (2012)
[159] Weis, J. A.; Miga, M. I.; Arlinghaus, L. R.; Li, X.; Abramson, V.; Chakravarthy, A. B.; Pendyala, P.; Yankeelov, T. E., Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction-diffusion model, Cancer Res., 75, 22, 4697-4707 (2015)
[160] Weis, J. A.; Miga, M. I.; Arlinghaus, L. R.; Li, X.; Chakravarthy, A. B.; Abramson, V.; Farley, J.; Yankeelov, T. E., A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy, Phys. Med. Biol., 58, 17, 5851 (2013)
[161] Weis, J. A.; Miga, M. I.; Arlinghaus, L. R.; Li, X.; Chakravarthy, A. B.; Abramson, V.; Farley, J.; Yankeelov, T. E., A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy, Phys. Med. Biol., 58, 17, 5851 (2013)
[162] Weis, J. A.; Miga, M. I.; Yankeelov, T. E., Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy, Comput. Methods Appl. Mech. Eng., 314, 494-512 (2017)
[163] Weiswald, L.-B.; Bellet, D.; Dangles-Marie, V., Spherical cancer models in tumor biology, Neoplasia, 17, 1, 1-15 (2015)
[164] Wise, S. M.; Lowengrub, J. S.; Frieboes, H. B.; Cristini, V., Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol., 253, 3, 524-543 (2008) · Zbl 1398.92135
[165] Xue, S.-L.; Li, B.; Feng, X.-Q.; Gao, H., Biochemomechanical poroelastic theory of avascular tumor growth, J. Mech. Phys. Solids, 94, 409-432 (2016)
[166] Xue, S.-L.; Li, B.; Feng, X.-Q.; Gao, H., A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation, J. Mech. Phys. Solids, 104, 32-56 (2017)
[167] Yankeelov, T. E.; An, G.; Saut, O.; Luebeck, E. G.; Popel, A. S.; Ribba, B.; Vicini, P.; Zhou, X.; Weis, J. A.; Ye, K., Multi-scale modeling in clinical oncology: opportunities and barriers to success, Ann. Biomed. Eng., 44, 9, 2626-2641 (2016)
[168] Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.; Bevilacqua, A.; Tesei, A., 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained, Sci. Rep., 6, 19103 (2016)
[169] Zeng, Y.; Hunter, A.; Beyerlein, I.; Koslowski, M., A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces, Int. J. Plast., 79, 293-313 (2016)
[170] Ziegler, H., An attempt to generalize Onsager’s principle, and its significance for rheological problems, Z. Angew. Math. Phys. (ZAMP), 9, 5, 748-763 (1958) · Zbl 0081.40002
[171] Ziegler, H.; Hochschule, E. T., Some Extremum Principles in Irreversible Thermodynamics, With Application to Continuum Mechanics. (1962), Swiss Federal Institute of Technology
[172] Ziegler, H.; Wehrli, C., The derivation of constitutive relations from the free energy and the dissipation function, Adv. Appl. Mech., 25, 183-238 (1987) · Zbl 0719.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.