×

The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. (English) Zbl 1477.35238

Summary: Based on recent works of B. Dodson and J. Murphy [Proc. Am. Math. Soc. 145, No. 11, 4859–4867 (2017; Zbl 1373.35287)] and A. K. Arora et al. [Proc. Am. Math. Soc. 148, No. 4, 1653–1663 (2020; Zbl 1435.35341)], we give a unified approach for the energy scattering with radially symmetric initial data for nonlinear Schrödinger equations and nonlinear Choquard equations in any dimensions \(N\geq 2\). We also discuss its applications for other Schrödinger-type equations.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35P25 Scattering theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Akahori; H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53, 629-672 (2013) · Zbl 1295.35365 · doi:10.1215/21562261-2265914
[2] A. K. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Cont. Dyn. Syst., 39, 6643-6668 (2019) · Zbl 1428.35480 · doi:10.3934/dcds.2019289
[3] A. K. Arora; B. Dodson; J. Murphy, Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 148, 1653-1663 (2020) · Zbl 1435.35341 · doi:10.1090/proc/14824
[4] A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, preprint, arXiv: 1904.05339. · Zbl 1473.35496
[5] L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, preprint, arXiv: 1905.02663. · Zbl 1452.35179
[6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, AMS, 2003. · Zbl 1055.35003
[7] T. Cazenave; D. Fang; J. Xie, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54, 2037-2062 (2011) · Zbl 1230.35128 · doi:10.1007/s11425-011-4283-9
[8] T. Cazenave; F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys., 147, 75-100 (1992) · Zbl 0763.35085 · doi:10.1007/BF02099529
[9] C. V. Coffman, Uniqueness of the ground state solution for \(\Delta u - u + u^3 = 0\) and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46, 81-95 (1972) · Zbl 0249.35029 · doi:10.1007/BF00250684
[10] V. D. Dinh, Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions, preprint, arXiv: 1908.02987. · Zbl 1473.35501
[11] V. D. Dinh, Dynamics of radial solutions for the focusing fourth-order Schrödinger equations, preprint, arXiv: 2001.03022.
[12] B. Dodson; J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145, 4859-4867 (2017) · Zbl 1373.35287 · doi:10.1090/proc/13678
[13] B. Dodson; J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25, 1805-1825 (2018) · Zbl 1420.35351 · doi:10.4310/MRL.2018.v25.n6.a5
[14] T. Duyckaerts; J. Holmer; S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15, 1233-1250 (2008) · Zbl 1171.35472 · doi:10.4310/MRL.2008.v15.n6.a13
[15] L. G. Farah; C. Guzman, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262, 4175-4231 (2017) · Zbl 1362.35284 · doi:10.1016/j.jde.2017.01.013
[16] L. G. Farah; C. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc., 51, 449-512 (2020) · Zbl 1437.35623 · doi:10.1007/s00574-019-00160-1
[17] D. Foschi, Inhomogeneous strichartz estimates, J. Hyperbolic Differ. Equ., 2, 1-24 (2005) · Zbl 1071.35025 · doi:10.1142/S0219891605000361
[18] C. Guevara, Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express., 2014, 177-243 (2014) · Zbl 1302.35348
[19] Q. Guo, Scattering for the focusing \(L^2\)-supercritical and \(\dot{H}^2\)-subcritical biharmonic NLS equations, Comm. Partial Differential Equations, 41, 185-207 (2016) · Zbl 1342.35335 · doi:10.1080/03605302.2015.1116556
[20] Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549.
[21] M. Hamano and M. Ikeda, Global dynamics below the ground state for the focusing Schrödinger equation with a potential, J. Evol. Equ., 2019 (in press). · Zbl 1448.35470
[22] J. Holmer; S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282, 435-467 (2008) · Zbl 1155.35094 · doi:10.1007/s00220-008-0529-y
[23] Y. Hong, Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pure Appl. Anal., 15, 1571-1601 (2016) · Zbl 1351.35157 · doi:10.3934/cpaa.2016003
[24] M. Keel; T. Tao, Endpoint strichartz estimates, Amer. J. Math., 120, 955-980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[25] C. E. Kenig; F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166, 645-675 (2006) · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[26] J. Krieger; E. Lenzmann; P. Raphaël, On stability of pseudo-conformal blowup for \(L^2\)-critical Hartree NLS, Ann. Henri Poincaré, 10, 1159-1205 (2009) · Zbl 1214.35064 · doi:10.1007/s00023-009-0010-2
[27] M. K. Kwong, Uniqueness of positive solution of \(\Delta u - u + u^p = 0\) in \(\mathbb R^n\), Arch. Rational Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032 · doi:10.1007/BF00251502
[28] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math., 57, 93-105 (1977) · Zbl 0369.35022 · doi:10.1002/sapm197757293
[29] C. Miao; G. Xu; L. Zhao, The cauchy problem of the hartree equation, J. Partial Diff. Eqs., 21, 22-44 (2008) · Zbl 1174.35099
[30] V. Moroz; J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[31] T. Ogawa; Y. Tsutsumi, Blow-up of \(H^1\) solution for the nonlinear Schrödinger equation, J. Differential Equations, 92, 317-330 (1991) · Zbl 0739.35093 · doi:10.1016/0022-0396(91)90052-B
[32] C. Sun; H. Wang; X. Yao; J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38, 2207-2228 (2018) · Zbl 1397.35162 · doi:10.3934/dcds.2018091
[33] E. Stein and T. S. Murphy, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993. · Zbl 0821.42001
[34] J. Stubbe, Global solutions and stable ground states of nonlinear Schrödinger equations, Phys. D, 48, 259-272 (1991) · Zbl 0753.35099 · doi:10.1016/0167-2789(91)90087-P
[35] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[36] T. Tao, On the asymptotic behavior of large radial data for a focusing nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 1, 1-48 (2004) · Zbl 1082.35144 · doi:10.4310/DPDE.2004.v1.n1.a1
[37] T. Tao; M. Visan; X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32, 1281-1343 (2007) · Zbl 1187.35245 · doi:10.1080/03605300701588805
[38] M. C. Vilela, Inhomogeneous strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359, 2123-2136 (2007) · Zbl 1196.35074 · doi:10.1090/S0002-9947-06-04099-2
[39] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87, 567-576 (1982/83) · Zbl 0527.35023
[40] C. L. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 134, 25 pp. · Zbl 1367.35081
[41] C. Xu and T. Zhao, A remark on the scattering theory for the 2D radial focusing INLS, preprint, arXiv: 1908.00743.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.