Furtado, Marcelo Fernandes; de Sousa, Karla Carolina Vicente Elliptic problems in the half-space with nonlinear critical boundary conditions. (English) Zbl 1481.35194 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 84, 16 p. (2021). MSC: 35J61 35B33 35J66 35A01 PDF BibTeX XML Cite \textit{M. F. Furtado} and \textit{K. C. V. de Sousa}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 84, 16 p. (2021; Zbl 1481.35194) Full Text: DOI OpenURL
Bhattacharya, Debdeep Mass-concentration of low-regularity blow-up solutions to the focusing 2D modified Zakharov-Kuznetsov equation. (English) Zbl 1476.35221 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 83, 29 p. (2021). MSC: 35Q53 35B44 37K40 35C07 37L50 PDF BibTeX XML Cite \textit{D. Bhattacharya}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 83, 29 p. (2021; Zbl 1476.35221) Full Text: DOI arXiv OpenURL
Maekawa, Yasunori Note on Smoothing estimates for Kolmogorov type equations. (English) Zbl 1479.35171 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 82, 12 p. (2021). MSC: 35B65 35H10 35K10 35Q84 PDF BibTeX XML Cite \textit{Y. Maekawa}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 82, 12 p. (2021; Zbl 1479.35171) Full Text: DOI OpenURL
Tateyama, Shota Hölder gradient estimates on \(L^p\)-viscosity solutions of fully nonlinear parabolic equations with VMO coefficients. (English) Zbl 07451779 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 81, 22 p. (2021). MSC: 35B45 35B65 35D40 35K10 35K55 PDF BibTeX XML Cite \textit{S. Tateyama}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 81, 22 p. (2021; Zbl 07451779) Full Text: DOI OpenURL
E, Weinan; Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. (English) Zbl 1476.65273 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 80, 31 p. (2021). MSC: 65M75 65C05 68T07 PDF BibTeX XML Cite \textit{W. E} et al., SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 80, 31 p. (2021; Zbl 1476.65273) Full Text: DOI arXiv OpenURL
Sourdis, Christos One-dimensional symmetry of positive bounded solutions to the nonlinear Schrödinger equation in the half-space in two and three dimensions. (English) Zbl 1479.35041 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 79, 6 p. (2021). MSC: 35B06 35B08 35B09 35B50 35J15 35J61 PDF BibTeX XML Cite \textit{C. Sourdis}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 79, 6 p. (2021; Zbl 1479.35041) Full Text: DOI arXiv OpenURL
Diao, Huaian; Liu, Hongyu; Wang, Xianchao; Yang, Ke On vanishing and localizing around corners of electromagnetic transmission resonances. (English) Zbl 1477.78003 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 78, 20 p. (2021). MSC: 78A46 35P30 76M10 PDF BibTeX XML Cite \textit{H. Diao} et al., SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 78, 20 p. (2021; Zbl 1477.78003) Full Text: DOI OpenURL
Sayyari, Mohammed; Dalcin, Lisandro; Parsani, Matteo Development and analysis of entropy stable no-slip wall boundary conditions for the Eulerian model for viscous and heat conducting compressible flows. (English) Zbl 1477.65169 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 77, 27 p. (2021). MSC: 65M70 PDF BibTeX XML Cite \textit{M. Sayyari} et al., SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 77, 27 p. (2021; Zbl 1477.65169) Full Text: DOI arXiv OpenURL
Ranocha, Hendrik; de Luna, Manuel Quezada; Ketcheson, David I. On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations. (English) Zbl 1476.65271 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 76, 26 p. (2021). MSC: 65M70 65M15 35Q35 PDF BibTeX XML Cite \textit{H. Ranocha} et al., SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 76, 26 p. (2021; Zbl 1476.65271) Full Text: DOI arXiv OpenURL
Shimizu, Senjo; Tsuritani, Hidenobu On a Navier-Stokes-Ohm problem from plasma physics in multi connected domains. (English) Zbl 07451773 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 75, 18 p. (2021). MSC: 35Qxx 35B35 76E25 PDF BibTeX XML Cite \textit{S. Shimizu} and \textit{H. Tsuritani}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 75, 18 p. (2021; Zbl 07451773) Full Text: DOI OpenURL
Imeri, Kthim Optimal design of optical analog solvers of linear systems. (English) Zbl 07451772 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 74, 19 p. (2021). MSC: 65-XX 35C20 78A46 PDF BibTeX XML Cite \textit{K. Imeri}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 74, 19 p. (2021; Zbl 07451772) Full Text: DOI arXiv OpenURL
Fan, Jishan; Ozawa, Tohru A note on 2D Navier-Stokes equations. (English) Zbl 1476.35170 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 73, 3 p. (2021). MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J. Fan} and \textit{T. Ozawa}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 73, 3 p. (2021; Zbl 1476.35170) Full Text: DOI OpenURL
Guilfoyle, Brendan; Klingenberg, Wilhelm Evolving to non-round Weingarten spheres: integer linear Hopf flows. (English) Zbl 1480.35276 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 72, 26 p. (2021). MSC: 35K10 35C08 53A05 53E10 PDF BibTeX XML Cite \textit{B. Guilfoyle} and \textit{W. Klingenberg}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 72, 26 p. (2021; Zbl 1480.35276) Full Text: DOI arXiv OpenURL
Barles, G. Local gradient estimates for second-order nonlinear elliptic and parabolic equations by the weak Bernstein’s method. (English) Zbl 1480.35069 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 71, 15 p. (2021). MSC: 35B45 35D40 35J15 35K10 PDF BibTeX XML Cite \textit{G. Barles}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 71, 15 p. (2021; Zbl 1480.35069) Full Text: DOI arXiv OpenURL
He, Siyuan; Liu, Xiaochun Multiple solutions for a class of fractional logarithmic Schrödinger equations. (English) Zbl 1481.35195 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 70, 30 p. (2021). MSC: 35J61 35R01 35A01 PDF BibTeX XML Cite \textit{S. He} and \textit{X. Liu}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 70, 30 p. (2021; Zbl 1481.35195) Full Text: DOI OpenURL
Hayashi, Nakao; Kaikina, Elena I.; Ogawa, Takayoshi Inhomogeneous Dirichlet boundary value problem for nonlinear Schrödinger equations in the upper half-space. (English) Zbl 1476.35198 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 69, 24 p. (2021). MSC: 35Q35 PDF BibTeX XML Cite \textit{N. Hayashi} et al., SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 69, 24 p. (2021; Zbl 1476.35198) Full Text: DOI OpenURL