Phan, Duy Approximate controllability for Navier-Stokes equations in \(\mathrm{3D}\) cylinders under Lions boundary conditions by an explicit saturating set. (English) Zbl 07450638 Evol. Equ. Control Theory 10, No. 1, 199-227 (2021). Reviewer: Dimplekumar Chalishajar (Lexington) MSC: 93B05 93C20 35Q30 PDF BibTeX XML Cite \textit{D. Phan}, Evol. Equ. Control Theory 10, No. 1, 199--227 (2021; Zbl 07450638) Full Text: DOI arXiv OpenURL
Schnaubelt, Roland; Spitz, Martin Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. (English) Zbl 1480.35372 Evol. Equ. Control Theory 10, No. 1, 155-198 (2021). MSC: 35Q61 35L60 35L50 PDF BibTeX XML Cite \textit{R. Schnaubelt} and \textit{M. Spitz}, Evol. Equ. Control Theory 10, No. 1, 155--198 (2021; Zbl 1480.35372) Full Text: DOI arXiv OpenURL
Gagnon, Ludovick; Urquiza, José M. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. (English) Zbl 1477.93121 Evol. Equ. Control Theory 10, No. 1, 129-153 (2021). MSC: 93B05 93B07 93C20 35L05 65M70 PDF BibTeX XML Cite \textit{L. Gagnon} and \textit{J. M. Urquiza}, Evol. Equ. Control Theory 10, No. 1, 129--153 (2021; Zbl 1477.93121) Full Text: DOI OpenURL
Can, Nguyen Huu; Tuan, Nguyen Huy; O’Regan, Donal; Au, Vo Van On a final value problem for a class of nonlinear hyperbolic equations with damping term. (English) Zbl 1480.35404 Evol. Equ. Control Theory 10, No. 1, 103-127 (2021). MSC: 35R30 35L35 35L76 47J06 47H10 47A52 PDF BibTeX XML Cite \textit{N. H. Can} et al., Evol. Equ. Control Theory 10, No. 1, 103--127 (2021; Zbl 1480.35404) Full Text: DOI OpenURL
Bhandari, Kuntal; Boyer, Franck Boundary null-controllability of coupled parabolic systems with Robin conditions. (English) Zbl 1480.35017 Evol. Equ. Control Theory 10, No. 1, 61-102 (2021). MSC: 35B30 35K20 93B05 PDF BibTeX XML Cite \textit{K. Bhandari} and \textit{F. Boyer}, Evol. Equ. Control Theory 10, No. 1, 61--102 (2021; Zbl 1480.35017) Full Text: DOI OpenURL
Mahmudov, Elimhan N. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. (English) Zbl 1476.49029 Evol. Equ. Control Theory 10, No. 1, 37-59 (2021). MSC: 49K15 49J52 49N15 34A60 PDF BibTeX XML Cite \textit{E. N. Mahmudov}, Evol. Equ. Control Theory 10, No. 1, 37--59 (2021; Zbl 1476.49029) Full Text: DOI arXiv OpenURL
Lv, Wenbin; Wang, Qingyuan Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. (English) Zbl 1480.35005 Evol. Equ. Control Theory 10, No. 1, 25-36 (2021). MSC: 35A09 35B45 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{W. Lv} and \textit{Q. Wang}, Evol. Equ. Control Theory 10, No. 1, 25--36 (2021; Zbl 1480.35005) Full Text: DOI OpenURL
Anh, Cung The; Thanh, Dang Thi Phuong; Toan, Nguyen Duong Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. (English) Zbl 1480.35055 Evol. Equ. Control Theory 10, No. 1, 1-23 (2021). MSC: 35B41 35B40 35Q30 45K05 PDF BibTeX XML Cite \textit{C. T. Anh} et al., Evol. Equ. Control Theory 10, No. 1, 1--23 (2021; Zbl 1480.35055) Full Text: DOI OpenURL