Hu, Dongdong; Cai, Wenjun; Gu, Xian-Ming; Wang, Yushun Efficient energy preserving Galerkin-Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator. (English) Zbl 07441574 Appl. Numer. Math. 172, 608-628 (2022). MSC: 65M60 35Q55 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{D. Hu} et al., Appl. Numer. Math. 172, 608--628 (2022; Zbl 07441574) Full Text: DOI OpenURL
Aràndiga, Francesc; Baeza, Antonio; Yáñez, Dionisio F. Monotone cubic spline interpolation for functions with a strong gradient. (English) Zbl 07441573 Appl. Numer. Math. 172, 591-607 (2022). MSC: 65D07 41A05 41A15 41A29 PDF BibTeX XML Cite \textit{F. Aràndiga} et al., Appl. Numer. Math. 172, 591--607 (2022; Zbl 07441573) Full Text: DOI arXiv OpenURL
Wang, Yuan-Ming; Zhang, Yu-Jia A Crank-Nicolson-type compact difference method with the uniform time step for a class of weakly singular parabolic integro-differential equations. (English) Zbl 07441572 Appl. Numer. Math. 172, 566-590 (2022). MSC: 65R20 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{Y.-J. Zhang}, Appl. Numer. Math. 172, 566--590 (2022; Zbl 07441572) Full Text: DOI OpenURL
Kedia, Nikki; Alikhanov, Anatoly A.; Singh, Vineet Kumar Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel. (English) Zbl 07441571 Appl. Numer. Math. 172, 546-565 (2022). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{N. Kedia} et al., Appl. Numer. Math. 172, 546--565 (2022; Zbl 07441571) Full Text: DOI OpenURL
Gyulov, Tihomir B.; Koleva, Miglena N. Penalty method for indifference pricing of American option in a liquidity switching market. (English) Zbl 1479.91444 Appl. Numer. Math. 172, 525-545 (2022). MSC: 91G60 65M06 91G20 60G40 PDF BibTeX XML Cite \textit{T. B. Gyulov} and \textit{M. N. Koleva}, Appl. Numer. Math. 172, 525--545 (2022; Zbl 1479.91444) Full Text: DOI OpenURL
Deng, Qiuxiang; Luo, Zhendong A reduced-order extrapolated finite difference iterative scheme for uniform transmission line equation. (English) Zbl 07441569 Appl. Numer. Math. 172, 514-524 (2022). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{Q. Deng} and \textit{Z. Luo}, Appl. Numer. Math. 172, 514--524 (2022; Zbl 07441569) Full Text: DOI OpenURL
Yang, Xuehua; Qiu, Wenlin; Chen, Haifan; Zhang, Haixiang Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space. (English) Zbl 07441568 Appl. Numer. Math. 172, 497-513 (2022). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Numer. Math. 172, 497--513 (2022; Zbl 07441568) Full Text: DOI OpenURL
De Bonis, M. C.; Laurita, C.; Sagaria, V. A numerical method for linear Volterra integral equations on infinite intervals and its application to the resolution of metastatic tumor growth models. (English) Zbl 07441567 Appl. Numer. Math. 172, 475-496 (2022). MSC: 65R20 45D05 92C42 PDF BibTeX XML Cite \textit{M. C. De Bonis} et al., Appl. Numer. Math. 172, 475--496 (2022; Zbl 07441567) Full Text: DOI OpenURL
Mohanty, R. K.; Ghosh, Bishnu Pada High resolution operator compact implicit half-step approximation for 3D quasi-linear hyperbolic equations and ADI method for 3D telegraphic equation on an irrational domain. (English) Zbl 07441566 Appl. Numer. Math. 172, 446-474 (2022). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{B. P. Ghosh}, Appl. Numer. Math. 172, 446--474 (2022; Zbl 07441566) Full Text: DOI OpenURL
Saberi-Movahed, Farid; Tajaddini, Azita; Heyouni, Mohammed; Elbouyahyaoui, Lakhdar Some iterative approaches for Sylvester tensor equations. I: A tensor format of truncated loose simpler GMRES. (English) Zbl 07441565 Appl. Numer. Math. 172, 428-445 (2022). MSC: 65F45 15A69 PDF BibTeX XML Cite \textit{F. Saberi-Movahed} et al., Appl. Numer. Math. 172, 428--445 (2022; Zbl 07441565) Full Text: DOI OpenURL
Saberi-Movahed, Farid; Tajaddini, Azita; Heyouni, Mohammed; Elbouyahyaoui, Lakhdar Some iterative approaches for Sylvester tensor equations. II: A tensor format of simpler variant of GCRO-based methods. (English) Zbl 07441564 Appl. Numer. Math. 172, 413-427 (2022). MSC: 65F45 15A69 PDF BibTeX XML Cite \textit{F. Saberi-Movahed} et al., Appl. Numer. Math. 172, 413--427 (2022; Zbl 07441564) Full Text: DOI OpenURL
Wang, Wansheng; Wang, Zheng; Mao, Mengli Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations. (English) Zbl 07441563 Appl. Numer. Math. 172, 393-412 (2022). MSC: 65M70 65L06 65M12 76D05 PDF BibTeX XML Cite \textit{W. Wang} et al., Appl. Numer. Math. 172, 393--412 (2022; Zbl 07441563) Full Text: DOI OpenURL
Wu, Nianci; Xiang, Hua On the generally randomized extended Gauss-Seidel method. (English) Zbl 07441562 Appl. Numer. Math. 172, 382-392 (2022). MSC: 65F10 PDF BibTeX XML Cite \textit{N. Wu} and \textit{H. Xiang}, Appl. Numer. Math. 172, 382--392 (2022; Zbl 07441562) Full Text: DOI OpenURL
Qiao, Leijie; Xu, Da; Qiu, Wenlin The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. (English) Zbl 07441561 Appl. Numer. Math. 172, 359-381 (2022). MSC: 65R20 45K05 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Qiao} et al., Appl. Numer. Math. 172, 359--381 (2022; Zbl 07441561) Full Text: DOI OpenURL
Scalone, Carmela Positivity preserving stochastic \(\theta\)-methods for selected SDEs. (English) Zbl 07441560 Appl. Numer. Math. 172, 351-358 (2022). MSC: 65C30 60H35 PDF BibTeX XML Cite \textit{C. Scalone}, Appl. Numer. Math. 172, 351--358 (2022; Zbl 07441560) Full Text: DOI OpenURL
Wei, Siqi; Spiteri, Raymond J. Qualitative property preservation of high-order operator splitting for the SIR model. (English) Zbl 07441559 Appl. Numer. Math. 172, 332-350 (2022). MSC: 92-08 65L05 92D30 PDF BibTeX XML Cite \textit{S. Wei} and \textit{R. J. Spiteri}, Appl. Numer. Math. 172, 332--350 (2022; Zbl 07441559) Full Text: DOI OpenURL
Fu, Yayun; Hu, Dongdong; Xu, Zhuangzhi High-order explicit conservative exponential integrator schemes for fractional Hamiltonian PDEs. (English) Zbl 07441558 Appl. Numer. Math. 172, 315-331 (2022). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{Y. Fu} et al., Appl. Numer. Math. 172, 315--331 (2022; Zbl 07441558) Full Text: DOI OpenURL
Zhu, Peng; Xie, Shenglan Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic problems. (English) Zbl 07441557 Appl. Numer. Math. 172, 300-314 (2022). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{P. Zhu} and \textit{S. Xie}, Appl. Numer. Math. 172, 300--314 (2022; Zbl 07441557) Full Text: DOI OpenURL
Stevenson, Rob; van Venetië, Raymond Operator preconditioning: the simplest case. (English) Zbl 07441556 Appl. Numer. Math. 172, 292-299 (2022). MSC: 65F08 65N30 65N38 PDF BibTeX XML Cite \textit{R. Stevenson} and \textit{R. van Venetië}, Appl. Numer. Math. 172, 292--299 (2022; Zbl 07441556) Full Text: DOI arXiv OpenURL
Lan, Guangqiang; Zhao, Mei; Qi, Siyuan Exponential stability of \(\theta\)-EM method for nonlinear stochastic Volterra integro-differential equations. (English) Zbl 1483.65017 Appl. Numer. Math. 172, 279-291 (2022). MSC: 65C30 60H10 60H20 45D05 45J05 65R20 PDF BibTeX XML Cite \textit{G. Lan} et al., Appl. Numer. Math. 172, 279--291 (2022; Zbl 1483.65017) Full Text: DOI OpenURL
Avijit, D.; Natesan, S. A novel two-step streamline-diffusion FEM for singularly perturbed 2D parabolic PDEs. (English) Zbl 07441554 Appl. Numer. Math. 172, 259-278 (2022). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{D. Avijit} and \textit{S. Natesan}, Appl. Numer. Math. 172, 259--278 (2022; Zbl 07441554) Full Text: DOI OpenURL
Zheng, Minling; Jin, Zhengmeng; Liu, Fawang; Anh, Vo Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian. (English) Zbl 07441553 Appl. Numer. Math. 172, 242-258 (2022). MSC: 65M60 35R11 65M12 PDF BibTeX XML Cite \textit{M. Zheng} et al., Appl. Numer. Math. 172, 242--258 (2022; Zbl 07441553) Full Text: DOI OpenURL
Xu, Fei; Huang, Qiumei; Yang, Huiting; Ma, Hongkun Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations. (English) Zbl 07441552 Appl. Numer. Math. 172, 224-241 (2022). MSC: 65N30 65N12 65N50 PDF BibTeX XML Cite \textit{F. Xu} et al., Appl. Numer. Math. 172, 224--241 (2022; Zbl 07441552) Full Text: DOI OpenURL
Macías-Díaz, J. E. On a discrete model that dissipates the free energy of a time-space fractional generalized nonlinear parabolic equation. (English) Zbl 07441551 Appl. Numer. Math. 172, 215-223 (2022). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Appl. Numer. Math. 172, 215--223 (2022; Zbl 07441551) Full Text: DOI OpenURL
Li, X. Y.; Wang, H. L.; Wu, B. Y. A stable and efficient technique for linear boundary value problems by applying kernel functions. (English) Zbl 07441550 Appl. Numer. Math. 172, 206-214 (2022). MSC: 65L99 65L10 PDF BibTeX XML Cite \textit{X. Y. Li} et al., Appl. Numer. Math. 172, 206--214 (2022; Zbl 07441550) Full Text: DOI OpenURL
De la Cruz Cabrera, Omar; Jin, Jiafeng; Noschese, Silvia; Reichel, Lothar Communication in complex networks. (English) Zbl 07441549 Appl. Numer. Math. 172, 186-205 (2022). MSC: 90B18 PDF BibTeX XML Cite \textit{O. De la Cruz Cabrera} et al., Appl. Numer. Math. 172, 186--205 (2022; Zbl 07441549) Full Text: DOI arXiv OpenURL
Çiloğlu, Pelin; Yücel, Hamdullah Stochastic discontinuous Galerkin methods with low-rank solvers for convection diffusion equations. (English) Zbl 1478.65118 Appl. Numer. Math. 172, 157-185 (2022). MSC: 65N30 65N75 35K57 60H35 PDF BibTeX XML Cite \textit{P. Çiloğlu} and \textit{H. Yücel}, Appl. Numer. Math. 172, 157--185 (2022; Zbl 1478.65118) Full Text: DOI arXiv OpenURL
Guan, Zhen; Wang, Jungang; Liu, Ying; Nie, Yufeng Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation. (English) Zbl 07441547 Appl. Numer. Math. 172, 133-156 (2022). MSC: 65M60 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Z. Guan} et al., Appl. Numer. Math. 172, 133--156 (2022; Zbl 07441547) Full Text: DOI OpenURL
Shi, Dongyang; Zhang, Sihui Unconditional superconvergence of the fully-discrete schemes for nonlinear prey-predator model. (English) Zbl 07441546 Appl. Numer. Math. 172, 118-132 (2022). MSC: 65M60 35Q92 65M12 92D25 PDF BibTeX XML Cite \textit{D. Shi} and \textit{S. Zhang}, Appl. Numer. Math. 172, 118--132 (2022; Zbl 07441546) Full Text: DOI OpenURL
Brio, M.; Caputo, J.-G.; Kravitz, H. Spectral solutions of PDEs on networks. (English) Zbl 07441545 Appl. Numer. Math. 172, 99-117 (2022). MSC: 65M70 05C12 35P05 65M06 65M60 PDF BibTeX XML Cite \textit{M. Brio} et al., Appl. Numer. Math. 172, 99--117 (2022; Zbl 07441545) Full Text: DOI arXiv OpenURL
Ion, Stelian; Marinescu, Dorin; Cruceanu, Stefan-Gicu Numerical scheme for solving a porous Saint-Venant type model for water flow on vegetated hillslopes. (English) Zbl 07441544 Appl. Numer. Math. 172, 67-98 (2022). MSC: 76M12 76B15 76S05 PDF BibTeX XML Cite \textit{S. Ion} et al., Appl. Numer. Math. 172, 67--98 (2022; Zbl 07441544) Full Text: DOI OpenURL
Feng, Yue; Xu, Zhiguo; Yin, Jia Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials. (English) Zbl 07441543 Appl. Numer. Math. 172, 50-66 (2022). MSC: 65M70 35Q41 81Q05 65M15 PDF BibTeX XML Cite \textit{Y. Feng} et al., Appl. Numer. Math. 172, 50--66 (2022; Zbl 07441543) Full Text: DOI arXiv OpenURL
Akiyama, Naho; Yamada, Toshihiro A weak approximation method for irregular functionals of hypoelliptic diffusions. (English) Zbl 07441542 Appl. Numer. Math. 172, 27-49 (2022). MSC: 65C30 60H07 60H30 PDF BibTeX XML Cite \textit{N. Akiyama} and \textit{T. Yamada}, Appl. Numer. Math. 172, 27--49 (2022; Zbl 07441542) Full Text: DOI OpenURL
Li, Jiyong Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. (English) Zbl 07441541 Appl. Numer. Math. 172, 1-26 (2022). MSC: 65M70 65M12 65M15 81Q05 PDF BibTeX XML Cite \textit{J. Li}, Appl. Numer. Math. 172, 1--26 (2022; Zbl 07441541) Full Text: DOI OpenURL