×

Modelling and direct numerical simulation of flow and solute dispersion in the spinal subarachnoid space. (English) Zbl 1481.92038

Summary: The motion of the cerebrospinal fluid in the spinal subarachnoid space, a slender annular canal surrounding the spinal cord, exhibits an oscillatory velocity component driven by the pressure oscillations induced by the cardiac and respiratory cycles. A time-averaged transport equation has been recently proposed for describing solute transport along the canal, circumventing the need to compute the concentration fluctuations resulting from this fast oscillatory motion. The accuracy and limitations of this time-averaged description are tested here by means of comparisons with results of direct numerical simulations spanning hundreds of oscillation cycles, as needed to generate significant dispersion of the solute. The comparisons between the numerical results and the predictions of the analytical model include velocity fields and quantifications of transient solute-dispersion events for selected values of the flow parameters and two different idealized, canonical geometries of the spinal canal. The comparisons clearly demonstrate the accuracy of the time-averaged description of the analytical model, which is seen to provide a good fidelity at a fraction of the computational cost involved in the direct numerical simulations. The variations of canal eccentricity along the spinal canal are found to play an important role in the dynamics of the solute transport, leading to the emergence of closed recirculating Lagrangian vortices that may hinder solute dispersion along the canal, as revealed by both direct numerical simulations and time-averaged results.

MSC:

92C35 Physiological flow
76Z05 Physiological flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Linninger, A. A.; Tangen, K.; Hsu, C.-Y.; Frim, D., Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics, Annu. Rev. Fluid Mech., 48, 1, 219-257 (2016) · Zbl 1356.76466
[2] Klarica, M.; Radoš, M.; Orešković, D., The movement of cerebrospinal fluid and its relationship with substances behavior in cerebrospinal and interstitial fluid, Neuroscience, 414, 28-48 (2019)
[3] Ringstad, G.; Valnes, L. M.; Dale, A. M.; Pripp, A. H.; Vatnehol, S. S.; Emblem, K. E.; Mardal, K. A.; Eide, P. K., Brain-wide glymphatic enhancement and clearance in humans assessed with mri, JCI Insight, 3, 13, e121537 (2018)
[4] Jessen, N. A.; Munk, A. S.; Lundgaard, I.; Nedergaard, M., The glymphatic system: a beginner’s guide, Neurochem Res., 40, 12, 25832599 (2015)
[5] Bunck, A. C.; Kroeger, J. R.; Juettner, A.; Brentrup, A.; Fiedler, B.; Crelier, G. R.; Martin, B. A.; Heindel, W.; Maintz, D.; Schwindt, W., Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia, Eur. Radiol., 22, 9, 1860-1870 (2012)
[6] Pahlavian, S. H.; Loth, F.; Luciano, M.; Oshinski, J.; Martin, B. A., Neural tissue motion impacts cerebrospinal fluid dynamics at the cervical medullary junction: a patient-specific moving-boundary computational model, Ann. Biomed. Eng., 43, 12, 2911-2923 (2015)
[7] Rice-Edwards, J. M., A pathological study of syringomyelia, J. Neurol. Neurosurg. Psychiatry, 40, 198 (1977)
[8] Martin, B. A.; Labuda, R.; Royston, T. J.; Oshinski, J. N.; Iskandar, B.; Loth, F., Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories, J. Biomech. Eng., 132, 11, 111007 (2010)
[9] Yeo, J.; Cheng, S.; Hemley, S.; Lee, B.; Stoodley, M.; Bilston, L., Characteristics of csf velocity-time profile in posttraumatic syringomyelia, Am. J. Neuroradiol., 38, 9, 1839-1844 (2017)
[10] Vinje, V.; Brucker, J.; Rognes, M. E.; Mardal, K. A.; Haughton, V., Fluid dynamics in syringomyelia cavities: effects of heart rate, CSF velocity, CSF velocity waveform and craniovertebral decompression, Neuroradiol J., 35, 5, 482-489 (2018)
[11] Onofrio, B. M.; Yaksh, T. L.; Arnold, P. G., Continuous low-dose intrathecal morphine administration in the treatment of chronic pain of malignant origin, Mayo Clin. Proc., 56, 516520 (1981)
[12] Lynch, L., Intrathecal drug delivery systems, Contin. Educ. Anaesth. Crit. Care Pain, 14, 2731 (2014)
[13] Fowler, M. J.; Cotter, J. D.; Knight, B. E.; Sevick-Muraca, E. M.; Sandberg, D. I.; Sirianni, R. W., Intrathecal drug delivery in the era of nanomedicine, Adv. Drug. Deliv. Rev., Inpress (2020)
[14] Lee, Y. C.; Hsieh, C. C.; Chuang, J. P.; Li, C. Y., The necessity of intrathecal chemotherapy for the treatment of breast cancer patients with leptomeningeal metastasis: a systematic review and pooled analysis, Curr. Probl. Cancer, 41, 355370 (2017)
[15] Remeš, F.; Tomaš, R.; Jindrák, V.; Vaniš, V.; Setlík, M., Intraventricular and lumbar intrathecal administration of antibiotics in postneurosurgical patients with meningitis and/or ventriculitis in a serious clinical state, J. Neurosurg., 119, 15961602 (2013)
[16] Bottros, M. M.; Christo, P. J., Current perspectives on intrathecal drug delivery, J. Pain Res., 7, 615626 (2014)
[17] Tangen, K.; Sullivan, J.; Holt, R. W.; Nestorov, I.; Verma, A.; Linninger, A. A., In-vivo intrathecal tracer dispersion in cynomolgus monkey validates wide biodistribution along neuraxis, IEEE Trans. Biomed. Eng., 67, 4, 1122-1132 (2020)
[18] Bernards, C. M., Cerebrospinal fluid and spinal cord distribution of baclofen and bupivacaine during slow intrathecal infusion in pigs., Anesthesiology, 105, 169178 (2006)
[19] Hettiarachchi, H. D.; Hsu, Y.; Harris Jr., T. J.; Penn, R.; Linninger, A. A., The effect of pulsatile flow on intrathecal drug delivery in the spinal canal, Ann. Biomed. Eng., 39, 10, 25922602 (2011)
[20] Tangen, K. M.; Leval, R.; Mehta, A. I.; Linninger, A. A., Computational and in vitro experimental investigation of intrathecal drug distribution: parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake, Anesthesia & Analgesia, 124, 1686-1696 (2017)
[21] Stockman, H. W., Effect of anatomical fine structure on the dispersion of solutes in the spinal subarachnoid space, J. Biomech. Eng., 129, 5, 666675 (2007)
[22] Hsu, Y.; Hettiarachchi, H. D.; Zhu, D. C.; Linninger, A. A., The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability, Anesth. Analg., 115, 2, 386-394 (2012)
[23] Tangen, K. M.; Hsu, Y.; Zhu, D. C.; Linninger, A. A., CNS wide simulation of flow resistance and drug transport due to spinal microanatomy, J. Biomech., 48, 10, 2144-2154 (2015)
[24] Khani, M.; Xing, T.; Gibbs, C.; Oshinski, J. N.; Stewart, G. R.; Zeller, J. R.; Martin, B. A., Nonuniform moving boundary method for computational fluid dynamics simulation of intrathecal cerebrospinal flow distribution in a cynomolgus monkey, J Biomech Eng., 139, 8, 0810051-08100512 (2017)
[25] Khani, M.; Sass, L. R.; Xing, T.; Sharp, M. K.; Balédent, O.; Martin, B. A., Anthropomorphic model of intrathecal cerebrospinal fluid dynamics within the spinal subarachnoid space: spinal cord nerve roots increase steady-Streaming, J. Biomech. Eng., 140, 8, 081012 (2018)
[26] Haughton, V.; Mardal, K.-A., Spinal fluid biomechanics and imaging: an update for neuroradiologists, Am. J. Neuroradiol., 35, 10, 1864-1869 (2014)
[27] Coenen, W.; Gutiérrez-Montes, C.; Sincomb, S.; Criado-Hidalgo, E.; Wei, K.; King, K.; Haughton, V.; Martínez-Bazán, C.; Sánchez, A. L.; Lasheras, J. C., Subject-specific studies of CSF bulk flow patterns in the spinal canal: implications for the dispersion of solute particles in intrathecal drug delivery, Am. J. Neuroradiol., 40, 7, 1242-1249 (2019)
[28] Sánchez, A. L.; Martínez-Bazán, C.; Gutiérrez-Montes, C.; Criado-Hidalgo, E.; Pawlak, G.; Bradley, W.; Haughton, V.; Lasheras, J. C., On the bulk motion of the cerebrospinal fluid in the spinal canal, J. Fluid Mech., 841, 203-227 (2018) · Zbl 1419.76736
[29] Lawrence, J. J.; Coenen, W.; Sánchez, A. L.; Pawlak, G.; Martínez-Bazán, C.; Haughton, V.; Lasheras, J. C., On the dispersion of a drug delivered intrathecally in the spinal canal, J. Fluid Mech., 861, 679-720 (2019) · Zbl 1415.76777
[30] Reina, M. A.; De Andrés, J. A.; Hadzic, A.; Prats-Galino, A.; Sala-Blanch, X.; van Zundert, A. A.J., Atlas of functional anatomy for regional anesthesia and pain medicine: Human structure, ultrastructure and 3D reconstruction images (2015), Springer
[31] Loth, F.; Yardimci, M. A.; Alperin, N., Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity, ASME J. Biomech. Eng., 123, 1, 7179 (2001)
[32] Sass, L. R.; Khani, M.; Natividad, G. C.; Tubbs, R. S.; Baledent, O.; Martin, B. A., A 3d subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets, Fluids Barriers CNS, 14, 1, 36 (2017)
[33] Kalata, W.; Martin, B. A.; Oshinski, J. N.; Jerosch-Herold, M.; Royston, T. J.; Loth, F., MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal, IEEE Trans. Biomed. Eng., 56, 6, 1765-1768 (2009)
[34] Sweetman, B.; Linninger, A. A., Cerebrospinal fluid flow dynamics in the central nervous system, Ann. Biomed. Eng., 39, 484-496 (2011)
[35] Issa, R. I., Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 1, 40-65 (1986) · Zbl 0619.76024
[36] Tao, J.; Sun, Q.; Liang, W.; Chen, Z.; He, Y.; Dehmer, M., Computational fluid dynamics based dynamic modeling of parafoil system, Appl. Math. Modell., 54, 136-150 (2018) · Zbl 1480.76069
[37] Bert, R. J.; Hayek, S. M.; Yaksh, T. L., Modeling spinal intrathecal drug distribution: the challenge of defining and predicting cerebrospinal fluid dynamics, Anesthesia & Analgesia, 124, 1403-1406 (2017)
[38] Yamada, S., Cerebrospinal fluid physiology: visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging time-spatial inversion pulse method, Croat Med J, 55, 4, 337346 (2014)
[39] Lindstrøm, E. K.; Ringstad, G.; Mardal, K. A.; Eide, P. K., Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus, Neuroimage Clin., 20, 731-741 (2018)
[40] Pizzichelli, G., Modelling approaches of innovative drug delivery strategies for the Central Nervous System (2016), Scuola Superiore Sant’Anna, Ph.D. thesis
[41] Wildsmith, J. A.W.; McClure, J. H.; Brown, D. T.; Scott, D. B., Effects of posture on the spread of isobaric and hyperbaric amethocaine, Br. J. Anaesth., 53, 3, 273-278 (1981)
[42] Mitchell, R. W.D.; Bowler, G. M.R.; Scott, D. B.; Edström, H. H., Effects of posture and baricity on spinal anaesthesia with 0.5
[43] Povey, H. M.R.; Jacobsen, J.; Westergaard-Nielsen, J., Subarachnoid analgesia with hyperbaric 0.5
[44] Richardson, M. G.; Thakur, R.; Abramowicz, J. S.; Wissler, R. N., Maternal posture influences the extent of sensory block produced by intrathecal dextrose-free bupivacaine with fentanyl for labor analgesia, Anesth. Analg., 83, 6, 1229-1233 (1996)
[45] Veering, B. T.; Immink-Speet, T. T.M.; Burm, A. G.L.; Stienstra, R.; van Kleef, J. W., Spinal anaesthesia with 0.5
[46] Stockman, H. W., Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space, J. Biomech. Eng., 128, 1, 106-114 (2006)
[47] Gupta, S.; Soellinger, M.; Boesiger, P.; Poulikakos, D.; Kurtcuoglu, V., Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space, J. Biomech. Eng., 131, 2, 021010 (2009)
[48] Pahlavian, S. H.; Yiallourou, T.; Tubbs, R. S.; Bunck, A. C.; Loth, F.; Goodin, M.; Raisee, M.; Martin, B. A., The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine, PLoS ONE, 9, 4, e91888 (2014)
[49] Haga, P. T.; Pizzichelli, G.; Mortensen, M.; Kuchta, M.; Pahlavian, S. H.; Sinibaldi, E.; Martin, B. A.; Mardal, K. A., A numerical investigation of intrathecal isobaric drug dispersion within the cervical subarachnoid space, PLoS ONE, 12, 3, e0173680 (2017)
[50] Sharp, M. K.; Carare, R. O.; Martin, B. A., Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system, Fluids Barriers CNS, 16, 13 (2019)
[51] Sharp, M. K.; Kamm, R. D.; Shapiro, A. H.; Kimmel, E.; Karniadakis, G. E., Dispersion in a curved tube during oscillatory flow, J. Fluid Mech., 223, 537-563 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.