×

Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: from subcellular dynamics to macroscopic PDEs with multiple taxis. (English) Zbl 1473.92007

Summary: We deduce a model for glioma invasion that accounts for the dynamics of brain tissue being actively degraded by tumor cells via excessive acidity production, but also according to the local orientation of tissue fibers. Our approach has a multiscale character: we start with a microscopic description of single cell dynamics including biochemical and/or biophysical effects of the tumor microenvironment, translated on the one hand into cell stress and corresponding forces and on the other hand into receptor binding dynamics. These lead on the mesoscopic level to kinetic equations involving transport terms with respect to all considered kinetic variables and eventually, by appropriate upscaling, to a macroscopic reaction-diffusion equation for glioma density with multiple taxis, coupled to (integro-)differential equations characterizing the evolution of acidity and macro- and mesoscopic tissue. Our approach also allows for a switch between fast and slower moving regimes, according to the local tissue anisotropy. We perform numerical simulations to assess the importance of each tactic term and investigate the influence of two models for tissue dynamics on the tumor shape. We also suggest how the model can be used to perform a numerical necrosis-based tumor grading or support radiotherapy planning by dose painting. Finally, we discuss alternative ways of including cell level environmental influences in such a multiscale modeling approach, ultimately leading in the macroscopic limit to (multiple) taxis.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

ISTL; Camino; PDELab; DUNE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Basser, P., Diffusion and diffusion tensor MR imaging: Fundamentals, in Magnetic Resonance Imaging of the Brain and Spine (Lippincott Williams, 2008), pp. 1752-1767.
[2] Bastian, P.et al., A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing82 (2008) 103-119. · Zbl 1151.65089
[3] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M. and Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing82 (2008) 121-138. · Zbl 1151.65088
[4] Bastian, P., Heimann, F. and Marnach, S., Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE), Kybernetika46 (2010) 294-315. · Zbl 1195.65130
[5] Bellomo, N., Bellouquid, A., Gibelli, L. and Outada, N., A Quest Towards a Mathematical Theory of Living Systems (Birkhäuser, 2017). · Zbl 1381.92001
[6] Bellomo, N., Bellouquid, A., Nieto, J. and Soler, J., On the asymptotic preserving theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci.22 (2012) 1130001. · Zbl 1328.92023
[7] Bellouquid, A., Calvo, J., Nieto, J. and Soler, J., Hyperbolic versus parabolic asymptotics in kinetic theory toward fluid dynamic models, SIAM J. Appl. Math.73 (2013) 1327-1346. · Zbl 1295.35351
[8] Beppu, T., Inoue, T., Shibata, Y., Kurose, A., Arai, H., Ogasawara, K., Ogawa, A., Nakamura, S. and Kabasawa, H., Measurement of fractional anisotropy using diffuson tensor MRI in supratentorial astrocytic tumors, J. Neuro-Oncol.63 (2003) 109-116.
[9] Blatt, M. and Bastian, P., The iterative solver template library, in Proc. 8th Int. Conf. on Applied Parallel Computing (Springer, 2006), pp. 666-675.
[10] Blatt, M.et al., The distributed and unified numerics environment, version 2.4, Arch. Numer. Softw.4 (2016) 13-29.
[11] Bondiau, P.-Y., Clatz, O., Sermesant, M., Marcy, P.-Y., Delingette, H., Frenay, M. and Ayache, N., Biocomputing: Numerical simulation of glioblastoma growth using diffusion tensor imaging, Phys. Med. Biol.53 (2008) 879-893.
[12] Brat, D. J., Castellano-Sanchez, A. A., Hunter, S. B., Pecot, M., Cohen, C., Hammond, E. H., Devi, S. N., Kaur, B. and Meir, E. G. V., Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population, Cancer Res.64 (2004) 920-927.
[13] Brunner, T. A. and Holloway, J. P., Two-dimensional time dependent Riemann solvers for neutron transport, J. Comput. Phys.210 (2005) 386-399. · Zbl 1077.82023
[14] Burini, D., and Chouhad, N., A multiscale view of nonlinear diffusion in biology: From cells to tissues, Math. Models Methods Appl. Sci.29 (2019) 791-823. · Zbl 1427.35291
[15] Calorini, L., Peppichelli, S. and Bianchini, F., Extracellular acidity as favoring factor of tumor progression and metastatic dissemination, Exper. Oncol.34 (2012) 79-84.
[16] Chauvière, A., Hillen, T. and Preziosi, L., Modeling cell movement in anisotropic and heterogeneous network tissues, Netw. Heterog. Media2 (2007) 333-357. · Zbl 1115.92009
[17] Chen, L., Painter, K., Surulescu, C. and Zhigun, A., Mathematical models for cell migration: A non-local perspective, Philos. Trans. R. Soc. B202037520190379. · Zbl 1458.35422
[18] Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S. K., Malandain, G. and Ayache, N., Realistic simulation of the 3d growth of brain tumors in MRI images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imag.24 (2005) 1334-1346.
[19] Conte, M., Gerardo-Giorda, L. and Groppi, M., Glioma invasion and its interplay with the nervous tissue: A multiscale model, J. Theor. Biol.2020486110088. · Zbl 1429.92052
[20] M. Conte and C. Surulescu, Mathematical modeling of glioma invasion: Acid- and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy, preprint (2020), arXiv:2007.12204.
[21] Cook, P., Bai, Y., Nedjati-Gilani, S., Seunarine, K., Hall, M., Parker, G. and Alexander, D. C., Camino: Open-source diffusion-MRI reconstruction and processing, in 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle WA, USA, (2006), p. 2759.
[22] Corbin, G., Hunt, A., Klar, A., Schneider, F. and Surulescu, C., Higher-order models for glioma invasion: From a two-scale description to effective equations for mass density and momentum, Math. Models Methods Appl. Sci.28 (2018) 1771-1800. · Zbl 1411.92034
[23] M. Descoteaux, High angular resolution diffusion MRI: From local estimation to segmentation and tractography, Ph.D. thesis, Université Nice-Sophia Antipolis (2008).
[24] Engwer, C., Hillen, T., Knappitsch, M. and Surulescu, C., Glioma follow white matter tracts: A multiscale dti-based model, J. Math. Biol.71 (2015) 551-582. · Zbl 1343.92072
[25] Engwer, C., Hunt, A. and Surulescu, C., Effective equations for anisotropic glioma spread with proliferation: A multiscale approach, Math. Med. Biol.33 (2016) 435-459. · Zbl 1400.92249
[26] Engwer, C., Knappitsch, M. and Surulescu, C., A multiscale model for glioma spread including cell-tissue interactions and proliferation, Math. Biosci. Eng.13 (2016) 443-460. · Zbl 1343.92073
[27] Erban, R. and Othmer, H. G., From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math.65 (2004) 361-391. · Zbl 1073.35116
[28] Estrella, V.et al., Acidity generated by the tumor microenvironment drives local invasion, Cancer Res.73 (2013) 1524-1535.
[29] Fletcher, P. T. and Joshi, S., Riemannian geometry for the statistical analysis of diffusion tensor data, Signal Process.87 (2007) 250-262. · Zbl 1186.94126
[30] Frieboes, H. B., Lowengrub, J. S., Wise, S., Zheng, X., Macklin, P., Bearer, E. L. and Cristini, V., Computer simulation of glioma growth and morphology, Neuroimage37 (2007) S59-S70.
[31] Giese, A., Kluwe, L., Laube, B., Meissner, H., Berens, M. E. and Westphal, M., Migration of human glioma cells on myelin, Neurosurgery38 (1996) 755-764.
[32] Giese, A. and Westphal, M., Glioma invasion in the central nervous system, Neurosurgery39 (1996) 235-252.
[33] González-Méndez, L., Gradilla, A.-C. and Guerrero, I., The cytoneme connection: Direct long-distance signal transfer during development, Development146 (2019) 9.
[34] Hammoud, M. A., Sawaya, R., Shi, W., Thall, P. F. and Leeds, N. E., Prognostic significance of preoperative MRI scans in glioblastoma multiforme, J. Neuro-Oncol.27 (1996) 65-73.
[35] Hatzikirou, H. and Deutsch, A., Cellular automata as microscopic models of cell migration in heterogeneous environments, Curr. Top. Develop. Biol.81 (2008) 401-434.
[36] Henker, C., Kriesen, T., Glass, Ä., Schneider, B. and Piek, J., Volumetric quantification of glioblastoma: Experiences with different measurement techniques and impact on survival, J. Neuro-Oncol.135 (2017) 391-402.
[37] Hillen, T., \( M^5\) mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol.53 (2006) 585-616. · Zbl 1112.92003
[38] Hillen, T. and Painter, K. J., Transport and anisotropic diffusion models for movement in oriented habitats, in Dispersal, Individual Movement and Spatial Ecology, eds. Lewis, P. M. and Petrovskii, S., , Vol. 207 (Springer, 2013), p. 46. · Zbl 1347.92065
[39] Hillen, T., Painter, K. J. and Winkler, M., Anisotropic diffusion in oriented environments can lead to singularity formation, Eur. J. Appl. Math.24 (2013) 371-413. · Zbl 1273.35165
[40] Hillen, T. and Swan, A., The diffusion limit of transport equations in biology, in Mathematical Models and Methods for Living Systems, eds. Preziosi, P. C., Hillen, T., Chaplain, M., Pugliese, A., Othmer, H. and Trucu, D. (Springer, 2016), pp. 73-129. · Zbl 1353.92077
[41] A. Hunt, Dti-based multiscale models for glioma invasion, Ph.D. thesis, TU Kaiserslautern (2017).
[42] Hunt, A. and Surulescu, C., A multiscale modeling approach to glioma invasion with therapy, Vietnam J. Math.45 (2017) 221-240. · Zbl 1372.92044
[43] Jbabdi, S., Mandonnet, E., Duffau, H., Capelle, L., Swanson, K. R., Pélégrini-Issac, M., Guillevin, R. and Benali, H., Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging, Magn. Reson. Med.54 (2005) 616-624.
[44] Jellison, B. J., Field, A. S., Medow, J., Lazar, M., Salamat, M. S. and Alexander, A. L., Diffusion tensor imaging of cerebral white matter: A pictorial review of physics, fiber tract anatomy, and tumor imaging patterns, Amer. J. Neuroradiol.25 (2004) 356-369.
[45] Kansal, A., Torquato, S., Iv, G. Harsh, Chiocca, E. and Deisboeck, T., Cellular automaton of idealized brain tumor growth dynamics, Biosystems55 (2000) 119-127.
[46] Kansal, A. R., Torquato, S., Harsh, G., Chiocca, E. and Deisboeck, T., Simulated brain tumor growth dynamics using a three-dimensional cellular automaton, J. Theor. Biol.203 (2000) 367-382.
[47] Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T. and Baba, Y., Acidic extracellular microenvironment and cancer, Cancer Cell Int.13 (2013) 1-8.
[48] Kelkel, J. and Surulescu, C., On some models for cancer cell migration through tissue, Math. Biosci. Eng.8 (2011) 575-589. · Zbl 1259.35206
[49] Kelkel, J. and Surulescu, C., A multiscale approach to cell migration in tissue networks, Math. Models Methods Appl. Sci.22 (2013) 1150017. · Zbl 1241.92041
[50] Kim, P. T. and Richards, D. S. P., Deconvolution density estimation on the space of positive definite symmetric matrices, in Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P Hettmansperger (World Scientific, 2011), pp. 147-168. · Zbl 1414.62184
[51] Kleihues, P., Soylemezoglu, F., Schäuble, B., Scheithauer, B. W. and Burger, P. C., Histopathology, classification and grading of gliomas, Glia5 (1995) 211-221.
[52] N. Kolbe, N. Sfakianakis, C. Stinner, C. Surulescu and J. Lenz, Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence, preprint (2020), arXiv:2005.01444v1.
[53] Konukoglu, E., Clatz, O., Bondiau, P.-Y., Delingette, H. and Ayache, N., Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, Med. Image Anal.14 (2010) 111-125.
[54] Kornberg, T. B. and Gilboa, L., Developmental biology: Nanotubes in the niche, Nature523 (2015) 292-293.
[55] Kros, J. M., Grading of gliomas: The road from eminence to evidence, J. Neuropathol. Exper. Neurol.70 (2011) 101-109.
[56] P. Kumar, J. Li and C. Surulescu, Multiscale modeling of glioma pseudopalisades: Contributions from the tumor microenvironment, preprint (2020), arXiv:2007.05297.
[57] Lauffenburger, D. A. and Linderman, J. J., Receptors: Models for Binding, Trafficking, and Signaling (Oxford Univ. Press, 1996).
[58] Lemou, M. and Mieussens, L., A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput.31 (2008) 334-368. · Zbl 1187.82110
[59] Lide, D. R. (ed.), CRC Handbook of Chemistry and Physics, Vol. 85 (CRC Press, 2004).
[60] Lorenz, T. and Surulescu, C., On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, Math. Models Methods Appl. Sci.24 (2014) 2383-2436. · Zbl 1300.92016
[61] Louis, D. N., Molecular pathology of malignant gliomas, Annu. Revi. Pathol.: Mech. Dis.1 (2006) 97-117.
[62] Loy, N. and Preziosi, L., Kinetic models with non-local sensing determining cell polarization and speed according to independent cues, J. Math. Biol.80 (2020) 373-421. · Zbl 1432.92020
[63] Martin, G. R. and Jain, R. K., Noninvasive measurement of interstitial ph profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy, Cancer Res.54 (1994) 5670-5674.
[64] Martin, N. K., Gaffney, E. A., Gatenby, R. A., Gillies, R. J., Robey, I. F. and Maini, P. K., A mathematical model of tumour and blood pHe regulation: The HCO_3-/CO_2 buffering system, Math. Biosci.230 (2011) 1-11. · Zbl 1215.92032
[65] Mercapide, J., De Cicco, R. Lopez, Castresana, J. S. and Klein-Szanto, A. J., Stromelysin-1/matrix metalloproteinase-3 (MMP-3) expression accounts for invasive properties of human astrocytoma cell lines, Int. J. Cancer106 (2003) 676-682.
[66] Milo, R., Jorgensen, P., Moran, U., Weber, G. and Springer, M., Bionumbers-the database of key numbers in molecular and cell biology, Nucl. Acids Res.38 (2009) D750-D753.
[67] Milo, R. and Phillips, R., Cell Biology by the Numbers (Garland Science, 2015).
[68] Nieto, J. and Urrutia, L., A multiscale model of cell mobility: From a kinetic to a hydrodynamic description, J. Math. Anal. Appl.433 (2016) 1055-1071. · Zbl 1354.92010
[69] Ohtsubo, T., Wang, X., Takahashi, A., Ohnishi, K., Saito, H., Song, C. W. and Ohnishi, T., p53-dependent induction of WAF1 by a low-pH culture condition in human glioblastoma cells, Cancer Res.57 (1997) 3910-3913.
[70] Othmer, H. G. and Hillen, T., The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math.61 (2000) 751-775. · Zbl 1002.35120
[71] Othmer, H. G. and Hillen, T., The diffusion limit of transport equations ii: Chemotaxis equations, SIAM J. Appl. Math.62 (2003) 1220-1250. · Zbl 1103.35098
[72] Painter, K., Modelling cell migration strategies in the extracellular matrix, J. Math. Biol.58 (2009) 511-543. · Zbl 1311.92041
[73] Painter, K. and Hillen, T., Mathematical modelling of glioma growth: The use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion, J. Theor. Biol.323 (2013) 25-39. · Zbl 1314.92083
[74] Perthame, B., Tang, M. and Vauchelet, N., Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway, J. Math. Biol.73 (2016) 1161-1178. · Zbl 1358.35207
[75] Plaza, R. G., Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process, J. Math.Biol.78 (2019) 1681-1711. · Zbl 1415.92039
[76] Pomraning, G., The Equations of Radiation Hydrodynamics, (Dover Publications, 2005).
[77] Portela, M., Venkataramani, V., Fahey-Lozano, N., Seco, E., Losada-Perez, M., Winkler, F. and Casas-Tintó, S., Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration, PloS Biol.17 (2019) e3000545.
[78] Poyato, D. and Soler, J., Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci.27 (2017) 1089-1152. · Zbl 1369.35050
[79] Raza, S. M., Fuller, G. N., Rhee, C. H., Huang, S., Hess, K., Zhang, W. and Sawaya, R., Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis, Clin. Cancer Res.10 (2004) 212-221.
[80] Stock, C. and Schwab, A., Protons make tumor cells move like clockwork, Pflügers Arch.-Eur. J. Physiol.458 (2009) 981-992.
[81] Sundgren, P., Dong, Q., Gomez-Hassan, D., Mukherji, S., Maly, P. and Welsh, R., Diffusion tensor imaging of the brain: Review of clinical applications, Neuroradiology46 (2004) 339-350.
[82] Swanson, K. R., Rockne, R. C., Claridge, J., Chaplain, M. A., Alvord, E. C. and Anderson, A. R., Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology, Cancer Res.71 (2011) 7366-7375.
[83] Tanaka, M. L., Debinski, W. and Puri, I., Hybrid mathematical model of glioma progression, Cell Prolif.42 (2009) 637-646.
[84] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.13 (1992) 631-644. · Zbl 0761.65023
[85] Vaupel, P., Kallinowski, F. and Okunieff, P., Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review, Cancer Res.49 (1989) 6449-6465.
[86] Wang, C. H.et al., Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Res.69 (2009) 9133-9140.
[87] Webb, B. A., Chimenti, M., Jacobson, M. P. and Barber, D. L., Dysregulated ph: A perfect storm for cancer progression, Nat. Rev. Cancer11 (2011) 671-677.
[88] Winkler, M., Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pures Appl.112 (2018) 118-169. · Zbl 1391.35065
[89] Winkler, M. and Surulescu, C., Global weak solutions to a strongly degenerate haptotaxis model, Commun. Math. Sci.15 (2016) 1581-1616. · Zbl 1390.35164
[90] Wippold, F., Lämmle, M., Anatelli, F., Lennerz, J. and Perry, A., Neuropathology for the neuroradiologist: Palisades and pseudopalisades, Amer. J. Neuroradiol.27 (2006) 2037-2041.
[91] Wong, R. K., Lee, T. C., Paul, D. and Peng, J., Fiber direction estimation, smoothing, and tracking in diffusion MRI, Ann. Appl. Statist.10 (2016) 1137-1156. · Zbl 1391.62257
[92] Wrensch, M., Minn, Y., Chew, T., Bondy, M. and Berger, M. S., Epidemiology of primary brain tumors: Current concepts and review of the literature, Neuro-Oncol.4 (2002) 278-299.
[93] Xue, C. and Othmer, H. G., Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math.70 (2009) 133-169. · Zbl 1184.35308
[94] Zhang, L., Jiang, B., Wu, Y., Strouthos, C., Sun, P. Z., Su, J. and Zhou, X., Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units, Theor. Biol. Med. Model.8 (2011) 46.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.