×

Three-dimensional topology optimization of a fluid-structure system using body-fitted mesh adaption based on the level-set method. (English) Zbl 1481.74620

Summary: We propose a new framework for the two- and three-dimensional topology optimization (TO) of the weakly-coupled fluid-structure system. The proposed design methodology uses a reaction-diffusion equation (RDE) for updating the level-set function based on the topological sensitivity. From the numerical point of view, two key ingredients are highlighted: (i) the body-fitted adaptive mesh strategy allows the disjoint reunion of a global mesh that contains several (fluid/solid) subdomains, whose interfaces can be described by an implicitly defined surface (zero level-set); (ii) our framework uses FreeFEM for finite element analysis (FEA) and PETSc for distributed linear algebra. Efficient preconditioner techniques are utilized to solve the large-scale finite element systems. From the engineering stand point, we propose a complete product development workflow including the pre-processing, TO, B-Rep conversion, and the numerical experiment. The performance of our methodology is demonstrated by solving three different optimization problems: compliance, power dissipation, and fluid-structure interaction (FSI). For comparison and for assessing our various techniques, we benchmark our designs against state-of-the-art works followed by showcasing a variety of practical engineering design examples.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
49Q10 Optimization of shapes other than minimal surfaces
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method (1988). · Zbl 0671.73065
[2] Zhou, M.; Rozvany, G. I., The COC algorithm, Part II: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech.Eng., 89, 1-3, 309-336 (1991)
[3] Rozvany, G. I.; Zhou, M.; Birker, T., Generalized shape optimization without homogenization, Struct. Optim., 4, 3-4, 250-252 (1992)
[4] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 9-10, 635-654 (1999) · Zbl 0957.74037
[5] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech.Eng., 192, 1-2, 227-246 (2003) · Zbl 1083.74573
[6] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[7] Yamada, T.; Izui, K.; Nishiwaki, S.; Takezawa, A., A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech.Eng., 199, 45-48, 2876-2891 (2010) · Zbl 1231.74365
[8] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 5, 885-896 (1993)
[9] Yang, X. Y.; Xie, Y. M.; Steven, G. P.; Querin, O., Bidirectional evolutionary method for stiffness optimization, AIAA J., 37, 11, 1483-1488 (1999)
[10] Guo, X.; Zhang, W.; Zhong, W., Doing topology optimization explicitly and geometrically a new moving morphable components based framework, J. Appl. Mech., 81, 8 (2014)
[11] Beghini, L. L.; Beghini, A.; Katz, N.; Baker, W. F.; Paulino, G. H., Connecting architecture and engineering through structural topology optimization, Eng. Struct., 59, 716-726 (2014)
[12] Dapogny, C.; Faure, A.; Michailidis, G.; Allaire, G.; Couvelas, A.; Estevez, R., Geometric constraints for shape and topology optimization in architectural design, Comput. Mech., 59, 6, 933-965 (2017) · Zbl 1398.74256
[13] He, Y.; Cai, K.; Zhao, Z.-L.; Xie, Y. M., Stochastic approaches to generating diverse and competitive structural designs in topology optimization, Finite Elem. Anal. Des., 173, 103399 (2020)
[14] Zhou, Q.; Shen, W.; Wang, J.; Zhou, Y. Y.; Xie, Y. M., Ameba: a new topology optimization tool for architectural design, Proceedings of IASS Annual Symposia, vol. 2018, 1-8 (2018), International Association for Shell and Spatial Structures (IASS)
[15] X.E. Technologies., Ameba® www.ameba.xieym.com. China.
[16] Liu, H.; Tian, Y.; Zong, H.; Ma, Q.; Wang, M. Y.; Zhang, L., Fully parallel level set method for large-scale structural topology optimization, Comput. Struct., 221, 13-27 (2019)
[17] E.A. Träff, O. Sigmund, N. Aage, Topology optimization of ultra high resolution shell structures, Thin-Walled Struct. 160107349.
[18] Aage, N.; Andreassen, E.; Lazarov, B. S.; Sigmund, O., Giga-voxel computational morphogenesis for structural design, Nature, 550, 7674, 84-86 (2017)
[19] Borrvall, T.; Petersson, J., Topology optimization of fluids in stokes flow, Int. J. Numer. MethodsFluids, 41, 1, 77-107 (2003) · Zbl 1025.76007
[20] Gersborg-Hansen, A.; Sigmund, O.; Haber, R. B., Topology optimization of channel flow problems, Struct. Multidiscip. Optim., 30, 3, 181-192 (2005) · Zbl 1243.76034
[21] Olesen, L. H.; Okkels, F.; Bruus, H., A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow, Int. J. Numer. MethodsEng., 65, 7, 975-1001 (2006) · Zbl 1111.76017
[22] Aage, N.; Poulsen, T. H.; Gersborg-Hansen, A.; Sigmund, O., Topology optimization of large scale stokes flow problems, Struct. Multidiscip. Optim., 35, 2, 175-180 (2008) · Zbl 1273.76094
[23] Duan, X.; Ma, Y.; Zhang, R., Optimal shape control of fluid flow using variational level set method, Phys. Lett. A, 372, 9, 1374-1379 (2008) · Zbl 1217.76027
[24] Zhou, S.; Li, Q., A variational level set method for the topology optimization of steady-state Navier-Stokes flow, J. Comput. Phys., 227, 24, 10178-10195 (2008) · Zbl 1218.76023
[25] Kreissl, S.; Maute, K., Level set based fluid topology optimization using the extended finite element method, Struct. Multidiscip. Optim., 46, 3, 311-326 (2012) · Zbl 1274.76251
[26] Feppon, F., Shape and topology optimization of multiphysics systems (2019), Paris Saclay, Ph.D. thesis
[27] Behrou, R.; Ranjan, R.; Guest, J. K., Adaptive topology optimization for incompressible laminar flow problems with mass flow constraints, Comput. Methods Appl. Mech.Eng., 346, 612-641 (2019) · Zbl 1440.74282
[28] Duan, X.; Li, F.; Qin, X., Topology optimization of incompressible Navier-Stokes problem by level set based adaptive mesh method, Comput. Math. Appl., 72, 4, 1131-1141 (2016) · Zbl 1359.76076
[29] Sato, Y.; Yaji, K.; Izui, K.; Yamada, T.; Nishiwaki, S., An optimum design method for a thermal-fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme, J. Mech. Des., 140, 3 (2018)
[30] Yaji, K.; Yamada, T.; Kubo, S.; Izui, K.; Nishiwaki, S., A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions, Int. J. Heat Mass Transf., 81, 878-888 (2015)
[31] Li, H.; Ding, X.; Meng, F.; Jing, D.; Xiong, M., Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: An experimental and numerical study, Int. J. Heat Mass Transf., 144, 118638 (2019)
[32] Yu, M.; Ruan, S.; Gu, J.; Ren, M.; Li, Z.; Wang, X.; Shen, C., Three-dimensional topology optimization of thermal-fluid-structural problems for cooling system design, Struct. Multidiscip. Optim., 62, 6, 3347-3366 (2020)
[33] Sasaki, Y.; Sato, Y.; Yamada, T.; Izui, K.; Nishiwaki, S., Topology optimization for fluid flows using the MPS method incorporating the level set method, Comput. Fluids, 188, 86-101 (2019) · Zbl 1519.76039
[34] Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S., Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions, J. Comput. Phys., 274, 158-181 (2014) · Zbl 1351.76255
[35] Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S., Topology optimization in thermal-fluid flow using the lattice Boltzmann method, J. Comput. Phys., 307, 355-377 (2016) · Zbl 1351.76256
[36] Alexandersen, J.; Andreasen, C. S., A review of topology optimisation for fluid-based problems, Fluids, 5, 1, 29 (2020)
[37] Maute, K.; Allen, M., Conceptual design of aeroelastic structures by topology optimization, Struct. Multidiscip. Optim., 27, 1-2, 27-42 (2004)
[38] Jenkins, N.; Maute, K., Level set topology optimization of stationary fluid-structure interaction problems, Struct. Multidiscip. Optim., 52, 1, 179-195 (2015)
[39] Yoon, G. H., Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation, Int. J. Numer. MethodsEng., 82, 5, 591-616 (2010) · Zbl 1188.74048
[40] Lundgaard, C.; Alexandersen, J.; Zhou, M.; Andreasen, C. S.; Sigmund, O., Revisiting density-based topology optimization for fluid-structure-interaction problems, Struct. Multidiscip. Optim., 58, 3, 969-995 (2018)
[41] Jenkins, N.; Maute, K., An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems, Struct. Multidiscip. Optim., 54, 5, 1191-1208 (2016)
[42] Feppon, F.; Allaire, G.; Bordeu, F.; Cortial, J.; Dapogny, C., Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework, SeMA J., 76, 3, 413-458 (2019) · Zbl 1422.49038
[43] Feppon, F.; Allaire, G.; Dapogny, C.; Jolivet, P., Topology optimization of thermal fluid-structure systems using body-fitted meshes and parallel computing, J. Comput. Phys., 417, 109574 (2020) · Zbl 1437.74021
[44] Allaire, G.; Dapogny, C.; Frey, P., A mesh evolution algorithm based on the level set method for geometry and topology optimization, Struct. Multidiscip. Optim., 48, 4, 711-715 (2013)
[45] F. Feppon, G. Allaire, C. Dapogny, P. Jolivet, Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers (2020). · Zbl 1506.74270
[46] Picelli, R.; Neofytou, A.; Kim, H. A., Topology optimization for design-dependent hydrostatic pressure loading via the level-set method, Struct. Multidiscip. Optim., 60, 4, 1313-1326 (2019)
[47] Picelli, R.; Vicente, W. M.; Pavanello, R., Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads, Finite Elem. Anal. Des., 135, 44-55 (2017)
[48] Picelli, R.; Ranjbarzadeh, S.; Sivapuram, R.; Gioria, R.; Silva, E. C.N., Topology optimization of binary structures under design-dependent fluid-structure interaction loads, Struct. Multidiscip. Optim., 62, 4, 2101-2116 (2020)
[49] Sivapuram, R.; Picelli, R., Topology optimization of binary structures using integer linear programming, Finite Elem. Anal. Des., 139, 49-61 (2018)
[50] Burger, M., A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces Free Boundaries, 5, 3, 301-329 (2003) · Zbl 1081.35134
[51] Lazarov, B. S.; Sigmund, O., Filters in topology optimization based on Helmholtz-type differential equations, Int. J. Numer. MethodsEng., 86, 6, 765-781 (2011) · Zbl 1235.74258
[52] Rockafellar, T., The multiplier method of Hestenes and Powell applied to convex programming, J. Optim. Theory Appl., 12, 6, 555-562 (1973) · Zbl 0254.90045
[53] Hestenes, M. R., Multiplier and gradient methods, J. Optim. Theory Appl., 4, 5, 303-320 (1969) · Zbl 0174.20705
[54] Powell, M. J., A method for nonlinear constraints in minimization problems, Optimization, 283-298 (1969) · Zbl 0194.47701
[55] Kumar, P.; Frouws, J. S.; Langelaar, M., Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method, Struct. Multidiscip. Optim., 1-19 (2020)
[56] McNeel, R., Rhinoceros 3D, Version 6.0 (2010), Robert McNeel & Associates, Seattle, WA
[57] Geuzaine, C.; Remacle, J.-F., Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. MethodsEng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[58] Hecht, F., New development in freefem++, J. Numer. Math., 20, 3-4, 251-266 (2012) · Zbl 1266.68090
[59] Jolivet, P.; Dolean, V.; Hecht, F.; Nataf, F.; Prud’homme, C.; Spillane, N., High-performance domain decomposition methods on massively parallel architectures with FreeFem++, J. Numer. Math., 20, 4, 287-302 (2012) · Zbl 1267.65195
[60] S. Abhyankar, J. Brown, E.M. Constantinescu, D. Ghosh, B.F. Smith, H. Zhang, PETSc/TS: a modern scalable ODE/DAE solver library, arXiv preprint arXiv:1806.01437(2018).
[61] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[62] URL https://www.mcs.anl.gov/petsc
[63] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page, 2019b, (https://www.mcs.anl.gov/petsc).
[64] Dapogny, C.; Dobrzynski, C.; Frey, P., Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., 262, 358-378 (2014) · Zbl 1349.76598
[65] Q. Inc., S-generator® www.quint.co.jp. japan.
[66] COMSOL, Comsol multiphysics® v. 5.4. www.comsol.com. comsol ab, stockholm, Sweden.
[67] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129
[68] Adams, M.; Bayraktar, H. H.; Keaveny, T. M.; Papadopoulos, P., Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom, Proceedings of the 2004 ACM/IEEE Conference on Supercomputing. Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC04, 34:1-34:15 (2004), IEEE Computer Society
[69] Falgout, R.; Yang, U., hypre: a library of high performance preconditioners, Computational Science—ICCS 2002, 632-641 (2002) · Zbl 1056.65046
[70] Moulin, J.; Jolivet, P.; Marquet, O., Augmented lagrangian preconditioner for large-scale hydrodynamic stability analysis, Comput. Methods Appl. Mech.Eng., 351, 718-743 (2019) · Zbl 1441.76069
[71] Li, H.; Yamada, T.; Jolivet, P.; Furuta, K.; Kondoh, T.; Izui, K.; Nishiwaki, S., Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method, Finite Elem. Anal. Des., 194, 103561 (2021)
[72] Marinov, M.; Amagliani, M.; Barback, T.; Flower, J.; Barley, S.; Furuta, S.; Charrot, P.; Henley, I.; Santhanam, N.; Finnigan, G. T., Generative design conversion to editable and watertight boundary representation, Comput.-Aided Des., 115, 194-205 (2019)
[73] Sá, L. F.; Amigo, R. C.R.; Novotny, A. A.; Silva, E. C.N., Topological derivatives applied to fluid flow channel design optimization problems, Struct. Multidiscip. Optim., 54, 2, 249-264 (2016)
[74] Pingen, G.; Maute, K., Optimal design for non-newtonian flows using a topology optimization approach, Comput. Math. Appl., 59, 7, 2340-2350 (2010) · Zbl 1193.76113
[75] Challis, V. J.; Guest, J. K., Level set topology optimization of fluids in stokes flow, Int. J. Numer. MethodsEng., 79, 10, 1284-1308 (2009) · Zbl 1176.76039
[76] Souza, B.; Yamabe, P.; Sá, L.; Ranjbarzadeh, S.; Picelli, R.; Silva, E., Topology optimization of fluid flow by using integer linear programming, Struct. Multidiscip. Optim., 1-20 (2021)
[77] Li, H.; Ding, X.; Jing, D.; Xiong, M.; Meng, F., Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization, Int. J. Therm. Sci., 146, 106065 (2019)
[78] Luo, Y.; Sigmund, O.; Li, Q.; Liu, S., Additive manufacturing oriented topology optimization of structures with self-supported enclosed voids, Comput. Methods Appl. Mech.Eng., 372, 113385 (2020) · Zbl 1506.74289
[79] Cirrottola, L.; Froehly, A., Parallel unstructured mesh adaptation based on iterative remershing and repartitioning, WCCM-Eccomas 2020-14th World Congress on Computational Mechanic (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.