×

Gravitational collapse in Einstein dilaton-Gauss-Bonnet gravity. (English) Zbl 1477.83079

Summary: We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field ‘hair’, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
83C57 Black holes
35L51 Second-order hyperbolic systems
35J47 Second-order elliptic systems

Software:

LAPACK
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hawking S W and Ellis G F R 1975 The Large Scale Structure of Space-Time(Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
[2] 2019 Tests of general relativity with the binary black hole signals from the LIGO-Virgo Catalog GWTC-1 (arXiv:1903.04467)
[3] Hirschmann E W, Lehner L, Liebling S L and Palenzuela C 2018 Black hole dynamics in Einstein-Maxwell-dilaton theory Phys. Rev. D 97 064032 · doi:10.1103/PhysRevD.97.064032
[4] Okounkova M, Stein L C, Scheel M A and Hemberger D A 2017 Numerical binary black hole mergers in dynamical Chern-Simons gravity: scalar field Phys. Rev. D 96 044020 · doi:10.1103/PhysRevD.96.044020
[5] Okounkova M, Scheel M A and Teukolsky S A 2018 Evolving metric perturbations in dynamical Chern-Simons gravity Phys. Rev. D 99 044019 · doi:10.1103/PhysRevD.99.044019
[6] Benkel R, Sotiriou T P and Witek H 2016 Dynamical scalar hair formation around a Schwarzschild black hole Phys. Rev. D 94 121503 · doi:10.1103/PhysRevD.94.121503
[7] Witek H, Gualtieri L, Pani P and Sotiriou T P 2018 Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics
[8] Alexander S and Yunes N 2009 Chern-Simons modified general relativity Phys. Rep.480 1-55 · doi:10.1016/j.physrep.2009.07.002
[9] Kanti P, Mavromatos N E, Rizos J, Tamvakis K and Winstanley E 1996 Dilatonic black holes in higher curvature string gravity Phys. Rev. D 54 5049-58 · doi:10.1103/PhysRevD.54.5049
[10] Maeda K-I, Ohta N and Sasagawa Y 2009 Black hole solutions in string theory with Gauss-Bonnet curvature correction Phys. Rev. D 80 104032 · doi:10.1103/PhysRevD.80.104032
[11] Yagi K, Stein L C and Yunes N 2016 Challenging the presence of scalar charge and dipolar radiation in binary pulsars Phys. Rev. D 93 024010 · doi:10.1103/PhysRevD.93.024010
[12] Sotiriou T P and Zhou S-Y 2014 Black hole hair in generalized scalar – tensor gravity Phys. Rev. Lett.112 251102 · doi:10.1103/PhysRevLett.112.251102
[13] Sotiriou T P and Zhou S-Y 2014 Black hole hair in generalized scalar – tensor gravity: an explicit example Phys. Rev. D 90 124063 · doi:10.1103/PhysRevD.90.124063
[14] Ripley J L and Pretorius F 2019 Hyperbolicity in spherical gravitational collapse in a Horndeski theory Phys. Rev. D 99 084014 · doi:10.1103/PhysRevD.99.084014
[15] Papallo G and Reall H S 2017 On the local well-posedness of Lovelock and Horndeski theories Phys. Rev. D 96 044019 · doi:10.1103/PhysRevD.96.044019
[16] Papallo G 2017 On the hyperbolicity of the most general Horndeski theory Phys. Rev. D 96 124036 · doi:10.1103/PhysRevD.96.124036
[17] Kovacs A D 2019 Well-posedness of cubic Horndeski theories (arXiv:1904.00963)
[18] Quiros I 2019 Selected topics in scalar – tensor theories and beyond Int. J. Mod. Phys. D 28 1930012 · Zbl 1425.83001 · doi:10.1142/S021827181930012X
[19] Kobayashi T 2019 Horndeski theory and beyond: a review (arXiv:1901.07183)
[20] Abbott B et al 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral Phys. Rev. Lett.119 161101 · doi:10.1103/PhysRevLett.119.161101
[21] Tattersall O J, Ferreira P G and Lagos M 2018 Speed of gravitational waves and black hole hair Phys. Rev. D 97 084005 · doi:10.1103/PhysRevD.97.084005
[22] Akhoury R, Garfinkle D and Saotome R 2011 Gravitational collapse of k-essence J. High Energy Phys.JHEP04(2011) 096 · doi:10.1007/JHEP04(2011)096
[23] Leonard C D, Ziprick J, Kunstatter G and Mann R B 2011 Gravitational collapse of K-essence Matter in Painlevé-Gullstrand coordinates J. High Energy Phys.JHEP10(2011) 028 · Zbl 1303.83029 · doi:10.1007/JHEP10(2011)028
[24] Brito R, Terrana A, Johnson M and Cardoso V 2014 Nonlinear dynamical stability of infrared modifications of gravity Phys. Rev. D 90 124035 · doi:10.1103/PhysRevD.90.124035
[25] Bernard L, Lehner L and Luna R 2019 Challenges to global solutions in Horndeski’s theory (arXiv:1904.12866)
[26] Bojowald M and Mielczarek J 2015 Some implications of signature-change in cosmological models of loop quantum gravity J. Cosmol. Astropart. Phys.JCAP08(2015) 052 · doi:10.1088/1475-7516/2015/08/052
[27] Stewart J M 2001 Signature change, mixed problems and numerical relativity Class. Quantum Grav.18 4983-95 · Zbl 0994.83002 · doi:10.1088/0264-9381/18/23/301
[28] Otway T 2015 Elliptic-Hyperbolic Partial Differential Equations: a Mini-Course in Geometric and Quasilinear Methods(Springer Briefs in Mathematics) (Berlin: Springer) · Zbl 1330.35002 · doi:10.1007/978-3-319-19761-6
[29] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco, CA: W. H. Freeman)
[30] Zwiebach B 1985 Curvature squared terms and string theories Phys. Lett.156B 315-7 · doi:10.1016/0370-2693(85)91616-8
[31] Gross D J and Sloan J H 1987 The quartic effective action for the heterotic string Nucl. Phys. B 291 41-89 · doi:10.1016/0550-3213(87)90465-2
[32] Atkinson K, Han W and Stewart D 2011 Numerical Solution of Ordinary Differential Equations(Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts) (New York: Wiley) · Zbl 1239.65001
[33] Courant R and Hilbert D 1962 Methods of Mathematical Physics(Methods of Mathematical Physics vol 2) (New York: Interscience) · Zbl 0099.29504
[34] Whitham G 2011 Linear and Nonlinear Waves(Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts) (New York: Wiley)
[35] Kreiss H and Lorenz J 1989 Initial-Boundary Value Problems and the Navier-Stokes Equations(Initial-Boundary Value Problems and the Navier-Stokes Equations vol 136) (London: Academic) · Zbl 0689.35001
[36] Christodoulou D 2008 Mathematical Problems of General Relativity(Mathematical Problems of General Relativity) (Zürich: European Mathematical Society) · Zbl 1136.83001 · doi:10.4171/005
[37] Geroch R P 1996 Partial differential equations of physics General Relativity. Proc., 46th Scottish Universities Summer School in Physics(NATO Advanced Study Institute, Aberdeen, UK, 16-29 July 1995)
[38] Misner C W and Sharp D H 1964 Relativistic equations for adiabatic, spherically symmetric gravitational collapse Phys. Rev.136 B571-6 · Zbl 0129.41102 · doi:10.1103/PhysRev.136.B571
[39] Szabados L B 2009 Quasi-local energy-momentum and angular momentum in general relativity Living Rev. Relativ.12 4 · Zbl 1215.83010 · doi:10.12942/lrr-2009-4
[40] Abreu G and Visser M 2010 Kodama time: geometrically preferred foliations of spherically symmetric spacetimes Phys. Rev. D 82 044027 · doi:10.1103/PhysRevD.82.044027
[41] Hayward S A 1996 Gravitational energy in spherical symmetry Phys. Rev. D 53 1938-49 · doi:10.1103/PhysRevD.53.1938
[42] Kodama H 1980 Conserved energy flux for the spherically symmetric system and the back reaction problem in the black hole evaporation Prog. Theor. Phys.63 1217 · doi:10.1143/PTP.63.1217
[43] Bardeen J M, Carter B and Hawking S W 1973 The four laws of black hole mechanics Commun. Math. Phys.31 161-70 · Zbl 1125.83309 · doi:10.1007/BF01645742
[44] Hayward S A 1994 General laws of black-hole dynamics Phys. Rev. D 49 6467-74 · doi:10.1103/PhysRevD.49.6467
[45] Ashtekar A and Krishnan B 2004 Isolated and dynamical horizons and their applications Living Rev. Relativ.7 10 · Zbl 1071.83036 · doi:10.12942/lrr-2004-10
[46] Friedman J L, Schleich K and Witt D M 1993 Topological censorship Phys. Rev. Lett.71 1486-9 · Zbl 0934.83033 · doi:10.1103/PhysRevLett.71.1486
[47] Galloway G J, Schleich K, Witt D M and Woolgar E 1999 Topological censorship and higher genus black holes Phys. Rev. D 60 104039 · doi:10.1103/PhysRevD.60.104039
[48] Benkel R, Sotiriou T P and Witek H 2017 Black hole hair formation in shift-symmetric generalised scalar – tensor gravity Class. Quantum Grav.34 064001 · Zbl 1368.83057 · doi:10.1088/1361-6382/aa5ce7
[49] ’t Hooft G and Veltman M J G 1974 One loop divergencies in the theory of gravitation Ann. Inst. Henri Poincare A 20 69-94 · Zbl 1422.83019
[50] Tanahashi N and Ohashi S 2017 Wave propagation and shock formation in the most general scalar – tensor theories Class. Quantum Grav.34 215003 · Zbl 1380.83226 · doi:10.1088/1361-6382/aa85fb
[51] Kreiss H, Kreiss H, Oliger J and Global Atmospheric Research Programme 1973 Methods for the Approximate Solution of Time Dependent Problems Geneva: International Council of Scientific Unions, World Meteorological Organization
[52] Gustafsson B, Kreiss H and Oliger J 1995 Time Dependent Problems and Difference Methods (New York: Wiley) · Zbl 0843.65061
[53] Anderson E et al 1999 LAPACK Users’ Guide 3rd edn (Philadelphia, PA: SIAM) · Zbl 0934.65030 · doi:10.1137/1.9780898719604
[54] Golub G and Van Loan C 2013 Matrix Computations Baltimore: Johns Hopkins University Press · Zbl 1268.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.