×

Geometrically nonlinear vibrations of FG-GPLRC cylindrical panels with cutout based on HSDT and mixed formulation: a novel variational approach. (English) Zbl 1487.74047

Summary: Based on Reddy’s third-order shear deformation theory and mixed formulation, a new numerical approach in the variational framework is developed to analyze the geometrically nonlinear free vibration behavior of cylindrical panels having cutouts with various shapes (e.g., square, circular, elliptical) under arbitrary boundary conditions. It is also assumed that the panel is made of functionally graded graphene platelet-reinforced composite with various patterns for the distribution of GPLs along the thickness direction whose effective properties are estimated using the modified Halpin-Tsai model in conjunction with the rule of mixture. The proposed approach can be named VDQFEM as it utilizes the VDQ and FE methods. Efficient matrix formulation, being free from the locking problem, computational efficiency and being able to solve problems with concave and polygon domains are the main features of VDQFEM. Selected numerical results are given to investigate the influences of geometrical parameters and weight fraction/distribution pattern of GPLs on the large-amplitude vibration response of panels with various cutouts and boundary conditions.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ventsel, E.; Krauthammer, T., Thin Plates and Shells, Theory, Analysis and Applications (2001), New York: Marcel Dekker, New York · doi:10.1201/9780203908723
[2] Pietraszkiewicz, W., Gorski, J.: (eds.) Shell Structures: Theory and Applications. In: Proceedings of 10th SSTA Conference Poland (2013)
[3] Zingoni, A., Shell structures in civil and mechanical engineering: theory and closed-form analytical solutions (1997), London: Thomas Telford, London · doi:10.1680/ssicame.36369
[4] Moussaoui, F.; Benamar, R., Non-linear vibrations of shell-type structures: a review with bibliography, J. Sound Vib., 255, 161-184 (2002) · doi:10.1006/jsvi.2001.4146
[5] Amabili, M.; APaidoussis, MP, Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction, Appl. Mech. Rev., 56, 349-381 (2003) · doi:10.1115/1.1565084
[6] Alijani, F.; Amabili, M., Non-linear vibrations of shells: a literature review from 2003 to 2013, Int. J. Non-Linear Mech., 58, 233-257 (2014) · doi:10.1016/j.ijnonlinmec.2013.09.012
[7] Amabili, M.; Reddy,, A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells, Int. J. Non-linear Mech., 45, 409-418 (2010) · doi:10.1016/j.ijnonlinmec.2009.12.013
[8] Amabili, M., A new third-order shear deformation theory with non-linearities in shear for static and dynamic analysis of laminated doubly curved shells, Compos. Struct., 128, 260-273 (2015) · doi:10.1016/j.compstruct.2015.03.052
[9] Amabili, M.; Reddy, JN, The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells, Compos. Struct., 244, 112265 (2020) · doi:10.1016/j.compstruct.2020.112265
[10] Kurpa, L.; Pilgun, G.; Amabili, M., Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments, J. Sound Vib., 306, 580-600 (2007) · doi:10.1016/j.jsv.2007.05.045
[11] Pilgun, G.; Amabili, M., Nonlinear vibrations of shallow circular cylindrical panels with complex geometry. Meshless discretization with the R-functions method, Int. J. Non-linear Mech., 47, 137-152 (2012) · doi:10.1016/j.ijnonlinmec.2011.11.011
[12] Ashrafi, B.; Hubert, P.; Vengallatore, S., Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems, Nanotechnology, 17, 4895 (2006) · doi:10.1088/0957-4484/17/19/019
[13] Esawi, AMK; Farag, MM, Carbon nanotube reinforced composites: potential and current challenges, Mater. Des., 28, 2394-2401 (2007) · doi:10.1016/j.matdes.2006.09.022
[14] Loos, M., Carbon nanotube reinforced composites, CNR Polym. Sci. Technol. (2015) · doi:10.1016/C2012-0-06123-6
[15] Shi, G.; Araby, S.; Gibson, CT; Meng, Q.; Zhu, S.; Ma, J., Graphene platelets and their polymer composites: fabrication, structure, properties, and applications, Adv. Funct. Mater., 28, 1706705 (2018) · doi:10.1002/adfm.201706705
[16] Secor, EB; Ahn, BY; Gao, TZ; Lewis, JA; Hersam, MC, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics, Adv. Mater., 27, 6683 (2015) · doi:10.1002/adma.201502866
[17] Gholami, R.; Ansari, R., Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates, Eng. Struct., 156, 197-209 (2018) · doi:10.1016/j.engstruct.2017.11.019
[18] Gholami, R.; Ansari, R., On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: a unified higher-order shear deformable model Iranian, Iranian J. Sci. Technol. Trans. Mech. Eng., 43, 603-620 (2019) · doi:10.1007/s40997-018-0182-9
[19] Rao, M.N., Schmidt, R., Schröder, K.U.: Forced vibration analysis of FG-graphene platelet reinforced polymer composite shells bonded with piezoelectric layers considering electroelastic nonlinearities. In: ASME 2018 conference on smart materials, adaptive structures and intelligent systems, 1, pp. 10-12 (2011)
[20] Wang, Y.; Xie, K.; Fu, T.; Shi, C., Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses, Compos. Struct., 209, 928-939 (2019) · doi:10.1016/j.compstruct.2018.11.014
[21] Wang, Y.; Feng, C.; Wang, X.; Zhao, Z.; Santiuste, C.; Dong, YH; Yang, J., Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity, Appl. Math. Model., 71, 298-315 (2019) · Zbl 1481.74325 · doi:10.1016/j.apm.2019.02.025
[22] Zhou, Z.; Ni, Y.; Tong, Z.; Zhu, S.; Sun, J.; Xu, X., Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells, Int. J. Mech. Sci., 151, 537-550 (2019) · doi:10.1016/j.ijmecsci.2018.12.012
[23] Faghih Shojaei, M.; Ansari, R., Variational differential quadrature: a technique to simplify numerical analysis of structures, Appl. Math. Model., 49, 705-738 (2017) · Zbl 1480.74078 · doi:10.1016/j.apm.2017.02.052
[24] Torabi, J.; Ansari, R.; Hassani, R., Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory, Eur. J. Mech. A/Solids, 73, 144-160 (2019) · Zbl 1406.74265 · doi:10.1016/j.euromechsol.2018.07.009
[25] Hassani, R.; Ansari, R.; Rouhi, H., Large deformation analysis of 2D hyperelastic bodies based on the compressible nonlinear elasticity: a numerical variational method, Int. J. Non-Linear Mech., 116, 39-54 (2019) · doi:10.1016/j.ijnonlinmec.2019.05.003
[26] Hassani, R.; Ansari, R.; Rouhi, H., A VDQ-based multifield approach to the 2D compressible nonlinear elasticity, Int. J. Numer. Meth. Eng., 118, 345-370 (2019) · doi:10.1002/nme.6015
[27] Ansari, R.; Hassani, R.; Gholami, R.; Rouhi, H., Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach, Int. J. Non-Linear Mech., 126, 103556 (2020) · doi:10.1016/j.ijnonlinmec.2020.103556
[28] Ansari, R.; Hassani, R.; Gholami, R.; Rouhi, H., Thermal postbuckling analysis of FG-CNTRC plates with various shapes and temperature-dependent properties using the VDQ-FEM technique, Aerosp. Sci. Technol., 106, 106078 (2020) · doi:10.1016/j.ast.2020.106078
[29] Affdl, JH; Kardos, JL, The Halpin-Tsai equations: a review, Polym. Eng. Sci., 16, 344-352 (1976) · doi:10.1002/pen.760160512
[30] Hull, D.; Clyne, T., An Introduction to Composite Materials (1996), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9781139170130
[31] Harris, B., Engineering Composite Materials (1986), London: The institute of Metals, London
[32] Wu, H.; Kitipornchai, S.; Yang, J., Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Mater. Des., 132, 430-441 (2017) · doi:10.1016/j.matdes.2017.07.025
[33] Alibeigloo, A., Three-dimensional free vibration analysis of multi-layered graphene sheets embedded in elastic matrix, J. Vib. Control, 19, 2357-2371 (2013) · doi:10.1177/1077546312456056
[34] Wu, H.; Drzal, LT, Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite, Mater. Chem. Phys., 146, 26-36 (2014) · doi:10.1016/j.matchemphys.2014.02.038
[35] Reddy, JN, A simple higher-order theory for laminated composite plates ASME, ASME J. Appl. Mech., 51, 745-752 (1984) · Zbl 0549.73062 · doi:10.1115/1.3167719
[36] Reddy, JN, Theory and Analysis of Elastic Plates and Shells (2006), CRC Press · doi:10.1201/9780849384165
[37] Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems, Appl. Bifurc. Theory, pp. 359-384 (1977) · Zbl 0581.65043
[38] Hasrati, E.; Ansari, R.; Torabi, J., A novel numerical solution strategy for solving nonlinear free and forced vibration problems of cylindrical shells, Appl. Math. Model., 53, 653-672 (2018) · Zbl 1480.74110 · doi:10.1016/j.apm.2017.08.027
[39] Mirzaei, M.; Kiani, Y., Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels, Compos. Struct., 142, 45-56 (2016) · doi:10.1016/j.compstruct.2015.12.071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.