×

Phase-based control of periodic flows. (English) Zbl 1494.76033

Summary: Unsteady bluff-body flows exhibit dominant oscillatory behaviour owing to periodic vortex shedding. The ability to manipulate this vortex shedding is critical to improving the aerodynamic performance of bodies in a flow. This goal requires a precise understanding of how the perturbations affect the asymptotic behaviour of the oscillatory flow and of the ability to control transient dynamics. In this work, we develop an energy-efficient flow-control strategy to alter the oscillation phase of time-periodic fluid flows rapidly. First, we perform a phase-sensitivity analysis to construct a reduced-order model for the response of the flow oscillation to impulsive control inputs at various phases. Next, we introduce a real-time optimal phase-control strategy based on the phase-sensitivity function obtained by solving the associated Euler-Lagrange equations as a two-point boundary-value problem. Our approach is demonstrated for the incompressible laminar flow past a circular cylinder and an airfoil. We show the effectiveness of phase control with different actuation inputs, including blowing and rotary control. Moreover, our control approach is a sensor-based approach without the need for access to high-dimensional measurements of the entire flow field.

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76D17 Viscous vortex flows
76M30 Variational methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Amitay, M. & Glezer, A.2002Controlled transients of flow reattachment over stalled airfoils. Intl J. Heat Fluid Flow23 (5), 690-699.
[2] Amitay, M. & Glezer, A.2006Flow transients induced on a 2D airfoil by pulse-modulated actuation. Exp. Fluids40 (2), 329-331.
[3] Bagheri, S.2013Koopman-mode decomposition of the cylinder wake. J. Fluid Mech.726, 596-623. · Zbl 1287.76116
[4] Barkley, D. & Henderson, R.D.1996Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech.322, 215-241. · Zbl 0882.76028
[5] Bewley, T.R.2001Flow control: new challenges for a new renaissance. Prog. Aerosp. Sci.37 (1), 21-58.
[6] Bhattacharjee, D., Hemati, M., Klose, B. & Jacobs, G.2018 Optimal actuator selection for airfoil separation control. In 2018 Flow Control Conference, p. 3692.
[7] Brown, E., Moehlis, J. & Holmes, P.2004On the phase reduction and response dynamics of neural oscillator populations. Neural Comput.16 (4), 673-715. · Zbl 1054.92006
[8] Brunton, S.L. & Noack, B.R.2015Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev.67, 050801.
[9] Brunton, S.L., Noack, B.R. & Koumoutsakos, P.2020Machine learning for fluid mechanics. Annu. Rev. Fluid Mech.52, 477-508. · Zbl 1439.76138
[10] Brunton, S.L., Proctor, J.L. & Kutz, J.N.2016Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA113 (15), 3932-3937. · Zbl 1355.94013
[11] Colonius, T. & Taira, K.2008A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Meth. Appl. Mech. Engng197, 2131-2146. · Zbl 1158.76395
[12] Colonius, T. & Williams, D.R.2011Control of vortex shedding on two-and three-dimensional aerofoils. Phil. Trans. R. Soc. Lond. A369 (1940), 1525-1539.
[13] Darabi, A. & Wygnanski, I.2004Active management of naturally separated flow over a solid surface. Part 2. The separation process. J. Fluid Mech.510, 131-144. · Zbl 1123.76302
[14] Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R. & Lehman, S.2000How animals move: an integrative view. Science288 (5463), 100-106.
[15] Dickinson, M.H., Lehmann, F. & Sane, S.P.1999Wing rotation and the aerodynamic basis of insect flight. Science284 (5422), 1954-1960.
[16] Eldredge, J.D. & Jones, A.R.2019Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech.51, 75-104. · Zbl 1412.76020
[17] Garcia, C.E., Prett, D.M. & Morari, M.1989Model predictive control: theory and practice – a survey. Automatica25 (3), 335-348. · Zbl 0685.93029
[18] Gerhard, J., Pastoor, M., King, R., Noack, B., Dillmann, A., Morzynski, M. & Tadmor, G.2003 Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Paper 2003-4262.
[19] Giannetti, F., Camarri, S. & Citro, V.2019Sensitivity analysis and passive control of the secondary instability in the wake of a cylinder. J. Fluid Mech.864, 45-72. · Zbl 1415.76187
[20] Guckenheimer, J.1975Isochrons and phaseless sets. J. Math. Biol.1 (3), 259-273. · Zbl 0345.92001
[21] Herbert, T., Bertolotti, F.P. & Santos, G.R.1987 Floquet analysis of secondary instability in shear flows. In Stability of Time Dependent and Spatially Varying Flows, pp. 43-57. Springer.
[22] Hornik, K., Stinchcombe, M. & White, H.1989Multilayer feedforward networks are universal approximators. Neural Networks2 (5), 359-366. · Zbl 1383.92015
[23] Joe, W.T., Colonius, T. & Macmynowski, D.G.2011Feedback control of vortex shedding from an inclined flat plate. Theor. Comput. Fluid Dyn.25 (1-4), 221-232. · Zbl 1272.76100
[24] Kaiser, E., Kutz, J.N. & Brunton, S.L.2018Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. Lond. A474 (2219), 20180335. · Zbl 1425.93175
[25] Kaiser, E., Noack, B.R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G. & Niven, R.K.2014Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech.754, 365-414. · Zbl 1329.76177
[26] Kajishima, T. & Taira, K.2017Computational Fluid Dynamics: Incompressible Turbulent Flows. Springer. · Zbl 1354.65002
[27] Kasdin, N.J.1995Runge-Kutta algorithm for the numerical integration of stochastic differential equations. J. Guid. Control Dyn.18 (1), 114-120. · Zbl 0838.93080
[28] Kawamura, Y. & Nakao, H.2013Collective phase description of oscillatory convection. Chaos23 (4), 043129. · Zbl 1331.34110
[29] Kawamura, Y. & Nakao, H.2015Phase description of oscillatory convection with a spatially translational mode. Physica D295, 11-29. · Zbl 1364.76046
[30] Khodkar, M.A., Klamo, J.T. & Taira, K.2021Phase-locking of laminar wake to periodic vibrations of a circular cylinder. Phys. Rev. Fluids6 (3), 034401.
[31] Khodkar, M.A. & Taira, K.2020Phase-synchronization properties of laminar cylinder wake for periodic external forcings. J. Fluid Mech.904. · Zbl 1460.76290
[32] Kim, J. & Bewley, T.R.2007A linear systems approach to flow control. Annu. Rev. Fluid Mech.39, 383-417. · Zbl 1296.76074
[33] Kuramoto, Y.1984Chemical Oscillations, Waves, and Turbulence. Springer. · Zbl 0558.76051
[34] Kuramoto, Y. & Nakao, H.2019On the concept of dynamical reduction: the case of coupled oscillators. Phil. Trans. R. Soc. Lond. A377 (2160), 20190041. · Zbl 1462.34062
[35] Malkin, I.G.1949The Methods of Lyapunov and Poincare in the Theory of Nonlinear Oscillations. Gostexizdat. · Zbl 0041.52704
[36] Mauroy, A. & Mezić, I.2012On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics. Chaos22 (3), 033112. · Zbl 1319.70024
[37] Mauroy, A. & Mezić, I.2018Global computation of phase-amplitude reduction for limit-cycle dynamics. Chaos28 (7), 073108. · Zbl 1401.37034
[38] Mauroy, A., Mezić, I. & Moehlis, J.2013Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Physica D261, 19-30. · Zbl 1284.37047
[39] Mezić, I.2005Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn.41 (1-3), 309-325. · Zbl 1098.37023
[40] Moehlis, J.2014Improving the precision of noisy oscillators. Physica D272, 8-17. · Zbl 1288.34052
[41] Moehlis, J., Shea-Brown, E. & Rabitz, H.2006Optimal inputs for phase models of spiking neurons. J. Comput. Nonlinear Dyn.1 (4), 358-367.
[42] Monga, B., Wilson, D., Matchen, T. & Moehlis, J.2019Phase reduction and phase-based optimal control for biological systems: a tutorial. Biol. Cybern.113 (1-2), 11-46. · Zbl 1411.92122
[43] Morari, M. & Lee, J.H.1999Model predictive control: past, present and future. Comput. Chem. Engng23 (4-5), 667-682.
[44] Munday, P.M. & Taira, K.2013On the lock-on of vortex shedding to oscillatory actuation around a circular cylinder. Phys. Fluids25, 013601.
[45] Nair, A.G., Yeh, C.A., Kaiser, E., Noack, B.R., Brunton, S.L. & Taira, K.2019Cluster-based feedback control of turbulent post-stall separated flows. J. Fluid Mech.875, 345-375. · Zbl 1421.76138
[46] Nakao, H.2016Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys.57 (2), 188-214.
[47] Pastoor, M., Henning, L., Noack, B.R., King, R. & Tadmor, G.2008Feedback shear layer control for bluff body drag reduction. J. Fluid Mech.608, 161-196. · Zbl 1145.76306
[48] Ramananarivo, S., Godoy-Diana, R. & Thiria, B.2011Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA108 (15), 5964-5969.
[49] Roma, A.M., Peskin, C.S. & Berger, M.J.1999An adaptive version of the immersed boundary method. J. Comput. Phys.153, 509-534. · Zbl 0953.76069
[50] Schmid, P.J.2010Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[51] Shyy, W., Kang, C., Chirarattananon, P., Ravi, S. & Liu, H.2016Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. Lond. A472 (2186), 20150712.
[52] Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H.2008Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.
[53] Siegel, S., Cohen, K. & Mclaughlin, T.2003 Feedback control of a circular cylinder wake in experiment and simulation. AIAA Paper 2003-3569.
[54] Sipp, D. & Lebedev, A.2007Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech.593, 333-358. · Zbl 1172.76318
[55] Sponberg, S & Daniel, T.L.2012Abdicating power for control: a precision timing strategy to modulate function of flight power muscles. Proc. R. Soc. Lond. B279 (1744), 3958-3966.
[56] Stuart, J.T.1960On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech.9 (3), 353-370. · Zbl 0096.21102
[57] Taira, K. & Nakao, H.2018Phase-response analysis of synchronization for periodic flows. J. Fluid Mech.846. · Zbl 1404.37102
[58] Takata, S., Kato, Y. & Nakao, H.2021 Fast optimal entrainment of limit-cycle oscillators by strong periodic inputs via phase-amplitude reduction and Floquet theory. arXiv:2104.09944.
[59] Wang, C. & Eldredge, J.2013Low-order phenomenological modeling of leading-edge vortex formation. Theor. Comput. Fluid Dyn.27 (5), 577-598.
[60] Williams, D.R., Tadmor, G., Colonius, T., Kerstens, W., Quach, V. & Buntain, S.2009Lift response of a stalled wing to pulsatile disturbances. AIAA J.47 (12), 3031-3037.
[61] Wilson, D.2020Stabilization of weakly unstable fixed points as a common dynamical mechanism of high-frequency electrical stimulation. Sci. Rep.10 (1), 1-21.
[62] Wilson, D. & Moehlis, J.2016Isostable reduction of periodic orbits. Phys. Rev. E94 (5), 052213.
[63] Winfree, A.T.2001The Geometry of Biological Time. Springer. · Zbl 1014.92001
[64] Wu, T.Y.2011Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech.43, 25-58. · Zbl 1210.76095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.