×

Sequential particle filter estimation of a time-dependent heat transfer coefficient in a multidimensional nonlinear inverse heat conduction problem. (English) Zbl 1479.35944

Summary: In the applied mathematical modelling of heat transfer systems, the heat transfer coefficient (HTC) is one of the most important parameters. This paper proposes a combination of the Method of Fundamental Solutions (MFS) with particle filter Sequential Importance Resampling (PF-SIR) to estimate the time-dependent HTC in two-dimensional transient inverse heat conduction problems from non-standard boundary integral measurements. These measurements ensure the unique solvability of the boundary coefficient identification problem. Numerical results show high performance on several test cases with both linear and nonlinear Robin boundary conditions, supporting the synergy between the MFS and simulation-based particle filter sequential analysis methods.

MSC:

35R30 Inverse problems for PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
80A23 Inverse problems in thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Karageorghis, A.; Lesnic, D.; Marin, L., A survey of applications of the MFS to inverse problems, Inverse Probl. Sci. Eng., 19, 309-336 (2011) · Zbl 1220.65157
[2] Valle, M. F.; Colaço, M. J.; Netto, F. S., Estimation of the heat transfer coefficient by means of the method of fundamental solutions, Inverse Probl. Sci. Eng., 16, 6, 777-795 (2008) · Zbl 1154.65076
[3] Abdelhamid, T.; Elsheikh, A. H.; Elazab, A.; Sharshir, S. W.; Selima, E. S.; Jiang, D., Simultaneous reconstruction of the time-dependent Robin coefficient and heat flux in heat conduction problems, Inverse Probl. Sci. Eng., 26, 9, 1231-1248 (2018) · Zbl 1423.35431
[4] Bazán, F. S.V.; Bedin, L.; Bozzoli, F., New methods for numerical estimation of convective heat transfer in circular ducts, Int. J. Therm. Sci., 139, 387-402 (2019)
[5] Mocerino, A.; Colaço, M. J.; Bozzoli, F.; Rainieri, S., Filtered reciprocity functional approach to estimate internal heat transfer coefficients in 2D cylindrical domains using infrared thermography, Int. J. Heat Mass Transf., 125, 1181-1195 (2018)
[6] Hamilton, F. C.; Colaço, M. J.; Rogério, R. N.; Leiroz, A. J.K., Heat transfer coefficient estimation of an internal combustion engine using particle filters, Inverse Probl. Sci. Eng., 22, 3, 483-506 (2014)
[7] Le Masson, P.; Loulou, T.; Artioukhine, E., Estimations of a 2D convection heat transfer coefficient during a metallurgical “jominy end-quench” test comparison between two methods and experimental validation, Inverse Probl. Sci. Eng., 12, 6, 595-617 (2004)
[8] Bouissa, Y.; Shahriari, D.; Champliaud, H.; Jahazi, M., Prediction of heat transfer coefficient during quenching of large size forged blocks using modeling and experimental validation, Case Stud. Therm. Eng., 13, 100379 (2019)
[9] Simsir, C.; Gur, H., A mathematical framework for simulation of thermal processing of materials: Application to steel quenching, Turk. J. Eng. Environ. Sci., 32, 85-100 (2008)
[10] Kupradze, V. D.; Aleksidze, M. A., The method of functional equations for the approximate solution of certain boundary value problems., USSR Comput. Math. Math. Phys., 4, 82-126 (1964) · Zbl 0154.17604
[11] Bogomolny, A., Fundamental solutions method for elliptic boundary value problems., SIAM J. Numer. Anal., 22, 644-669 (1985) · Zbl 0579.65121
[12] Alves, C. J.S.; Chen, C. S., A new method of fundamental solutions applied to nonhomogeneous elliptic problems, Adv. Comput. Math., 23, 125-142 (2005) · Zbl 1070.65119
[13] Johansson, B. T.; Lesnic, D., A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem., 32, 697-703 (2008) · Zbl 1244.80021
[14] Mera, N. S., The method of fundamental solutions for the backward heat conduction problem, Inverse Probl. Sci. Eng., 13, 1, 65-78 (2005) · Zbl 1194.80107
[15] Johansson, B. T.; Lesnic, D., A method of fundamental solutions for transient heat conduction in layered materials, Eng. Anal. Bound. Elem., 33, 1362-1367 (2009) · Zbl 1244.80022
[16] Johansson, B. T., Properties of a method of fundamental solutions for the parabolic heat equation, Appl. Math. Lett., 65, 83-89 (2016) · Zbl 1353.35021
[17] Masson, P. L.; Loulou, T.; Artioukhine, E., Estimation of a 2D convection heat transfer coefficient during a test: Comparison between two methods and experimental validation, Inverse Probl. Sci. Eng., 12, 594-617 (2004)
[18] Yang, F.; Yan, L.; Wei, T., The identification of a Robin coefficient by a conjugate gradient method, Int. J. Numer. Methods Eng., 78, 800-816 (2009) · Zbl 1183.80099
[19] Lu, T.; Han, W.; Jiang, P.; Zhu, Y.; Wu, J.; Liu, C., A two-dimensional inverse heat conduction problem for simultaneous estimation of heat convection coefficient, fluid temperature and wall temperature on the inner wall of a pipeline, Prog. Nucl. Energy, 81, 161-168 (2015)
[20] Yan, L.; Yang, F.; Fu, C., Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems, J. Comput. Appl. Math., 231, 840-850 (2009) · Zbl 1169.65093
[21] Doucet, A.; Godsill, S.; Andrieu, C., On sequential Monte Carlo Sampling methods for Bayesian filtering, Stat. Comput., 10, 197-208 (2000)
[22] Slodička, M.; Lesnic, D.; Onyango, T. T.M., Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem, Inverse Probl. Sci. Eng., 18, 65-81 (2010) · Zbl 1186.65132
[23] Onyango, T. T.M.; Ingham, D. B.; Lesnic, D.; Slodička, M., Determination of a time-dependent heat transfer coefficient non-standard boundary measurements, Math. Comput. Simul., 79, 1577-1584 (2009) · Zbl 1169.65091
[24] Onyango, T. T.M.; Ingham, D. B.; Lesnic, D., Reconstruction of heat transfer coefficients using the boundary element method, Comput. Math. Appl., 56, 1, 114-126 (2008) · Zbl 1145.65327
[25] Kalman, R., A new approach to linear filtering and prediction problems, ASME J. Basic Eng., 82, 35-45 (1960)
[26] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 0927.35134
[27] Arulampalam, S.; Maskell, S.; Gordon, N.; Clapp, T., A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174-188 (2001)
[28] Kaipio, J.; Duncan, S.; Seppanen, A.; Somersalo, E.; Voutilainen, A., Handbook of Process Imaging for Automatic Control, State Estimation for Process Imaging (2005), CRC Press: CRC Press Boca Raton, FL
[29] Andrieu, C.; Doucet, A.; Sumeetpal, S.; Tadic, V., Particle methods for charge detection, system identification and control, Proc. IEEE, 92, 423-438 (2004)
[30] Hammersley, J. M.; Hanscomb, D. C., Monte Carlo Methods (1964), Chapman & Hall: Chapman & Hall New York · Zbl 0121.35503
[31] Gordon, N.; Salmond, D.; Smith, A. F.M., Novel approach to nonlinear and non-Gaussian Bayesian state estimation, IEE Proc. F Radar Signal Proc., 140, 107-113 (1993)
[32] Orlande, H. R.B.; Colaço, M. J.; Dulikravich, G. S.; Vianna, F.; Silva, W. B.; Fonseca, H. M.; Fudim, O., State estimation problems in heat transfer, Int. J. Uncertain. Quantif., 2, 239-258 (2012) · Zbl 1320.80002
[33] Silva, W. B.; Dutra, J. C.S.; Costa, J. M.J.; Abreu, L. A.S.; Knupp, D. C.; Silva Neto, A. J., A hybrid estimation scheme based on the sequential importance resampling particle filter and the particle swarm optimization (PSO-SIR), Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, 247-261 (2019), Springer International Publishing
[34] Silva, W.; Dutra, J. S.; Kopperschimidt, C. E.P.; Lesnic, D.; Aykroyd, R. G., Sequential estimation of the time-dependent heat transfer coefficient using the method of fundamental solutions and particle filters, Inverse Probl. Sci. Eng., submitted (2019)
[35] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Englewood Cliffs: Englewood Cliffs New Jersey · Zbl 0144.34903
[36] Slodicka, M.; Van Keer, R., Determination of a Robin coefficient in semilinear parabolic problems by means of boundary measurements, Inverse Probl., 18, 1, 139-152 (2002) · Zbl 0992.35121
[37] Johansson, B. T.; Lesnic, D.; Reeve, T., A method of fundamental solutions for two-dimensional heat conduction, Int. J. Comput. Math., 88, 8, 1697-1713 (2011) · Zbl 1223.35013
[38] (in press)
[39] 1073-1072
[40] Doucet, A.; Freitas, N.; Gordon, N., Sequential Monte Carlo Methods in Practice (2001), Springer: Springer Berlin · Zbl 0967.00022
[41] Doucet, A.; Tadic, V. B., Parameter estimation in general state space models using particle methods, Ann. Inst. Stat. Math., 55, 409-422 (2003) · Zbl 1047.62084
[42] Liu, J.; West, M., Combined parameter and state estimation in simulation-based filtering, Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, 197-223 (2001), Springer · Zbl 1056.93583
[43] Silva, W. B.; Rochoux, M. C.; Orlande, H. R.B.; Colaço, M. J.; Fudym, O.; El-Hafi, M.; Cuenot, B.; Ricci, S., Application of particle filters to regional-scale wildfire spread, High Temp. High Press., 43, 415-440 (2014)
[44] Salardani, L. S.F.; Albuquerque, L. P.; Costa, J. M.J.; Da Silva, W. B.; Dutra, J. C.S., Particle filter-based monitoring scheme for simulated bio-ethylene production process., Inverse Probl. Sci. Eng., 27, 648-668 (2018)
[45] Ristic, B.; Arulampalam, S.; Gordon, N., Beyond the Kalman Filter (2004), Artech House: Artech House Boston · Zbl 1092.93041
[46] Dias, A. C.S. R.; Da Silva, W. B.; Dutra, J. C.S., Propylene polymerization reactor control and estimation using a particle filter and neural network., Macromol. React. Eng., 11, 1-20 (2017)
[47] Marques, R.; Silva, W. B.; Hoffmann, R.; Dutra, J. S.; Coral, F., Sequential state inference of engineering systems through the particle move-reweighting algorithm, Comput. Appl. Math., 37, 220-236 (2017) · Zbl 1438.62176
[48] Liu, J.; Chen, R., Sequential Monte Carlo methods for dynamical systems, J. Am. Stat. Assoc., 93, 1032-1044 (1998) · Zbl 1064.65500
[49] Zhuo, L.; Meng, S.; Yi, F., The use of cooled axial conduction guarded probe for the measurement of transient heat flux by calibrating the unit step response, Int. J. Heat Mass Transf., 147, 118850 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.