×

Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration. (English) Zbl 1473.35593

Summary: Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for many cellular processes including cell movement, cell differentiation, and cell division, making them a key target for anti-cancer treatment. In particular, it has been shown that at low dose, MT targeted agents (MTAs) may induce an anti-migratory effect on cancer and endothelial cells, leading to new prospects in cancer therapy. In that context, we propose to better understand the role of MT dynamics and thus of MTAs on cell migration using a mathematical cell centered model of cell migration taking into account the action of microtubules in the process. The model use a fluid based approach that describes, through level-set techniques, the deformation of the membrane during cell migration. The fluid part of the model is mainly composed of Stokes equations and the biochemical state of the cell is described using Reaction-Diffusion equations. Microtubules act on the biochemical state by activating or inactivating proteins of the Rho-GTPases family. The numerical simulation of the model is performed using Discrete Duality Finite Volume techniques. We describe the different schemes used for the simulation, focusing on the adaptation of preexisting methods to our particular case. Numerical simulation are performed, showing a realistic behavior of the simulated cells in term of shape, speed and microtubules dynamics. Different strategies for a depolymerizing MTA (Vincristin) mechanisms are investigated and show the robutness of our model.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35Q49 Transport equations
92C37 Cell biology
92C40 Biochemistry, molecular biology
76D07 Stokes and related (Oseen, etc.) flows
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Software:

MOOD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Abercrombie, The Croonian lecture, 1978: The crawling movement of metazoan cells. Proc. Roy. Soc. Lond. B 207 (1980) 129-147. · doi:10.1098/rspb.1980.0017
[2] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114 (1994) 45-58. · Zbl 0822.65062 · doi:10.1006/jcph.1994.1148
[3] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145-195. · Zbl 1111.65101 · doi:10.1002/num.20170
[4] M. Bailly and J. Condeelis, Cell motility: Insights from the backstage. Nat. Cell Biol. 4 (2003) E292-E294. · doi:10.1038/ncb1202-e292
[5] A. Barlukova, G. Henry, S. Honoré, F. Hubert and D. White, In silico modeling microtubule dynamic instability with new mathematical concept of GTP-hydrolysis and aging. ESAIM: M2AN (2017). · Zbl 1415.92078
[6] R. Bergès, A. Tchoghandjian, S. Honoré, M.-A. Estève, D. Figarella-Branger, F. Bachmann, H.A. Lane and D. Braguer, The novel tubulin-binding checkpoint activator BAL101553 inhibits EB1-dependent migration and invasion and promotes differentiation of glioblastoma stem-like cells. Mol. Cancer Ther. 15 (2016) 2740-2749. · doi:10.1158/1535-7163.MCT-16-0252
[7] P. Brest, L. Le’Negrate, G. Turchi, T.L. Le’Negrate, G. Brest, P.F. Berto, C. Moreilhon, B. Mari, G. Ponzio and P. Hofman, Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury. Infect Immun. 72 (2004) 5733-5740. · doi:10.1128/IAI.72.10.5733-5740.2004
[8] J. Cau and A. Hall, Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118 (2005) 2579-2587. · doi:10.1242/jcs.02385
[9] C. Chainais-Hillairet, S. Krell and A. Mouton, Study of discrete duality finite volume schemes for the Peaceman model. SIAM J. Sci. Comput. 35 (2013) A2928-A2952. · Zbl 1292.76044 · doi:10.1137/130910555
[10] S. Clain, S. Diot and R. Loubère, A high-order finite volume method for hyperbolic systems: multi-dimensional Optimal Order Detection (MOOD). J. Comput. Phys. 230 (2011) 4028-4050. · Zbl 1218.65091 · doi:10.1016/j.jcp.2011.02.026
[11] J. Condeelis, R.H. Singer and J.E. Segall, the great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21 (2005) 695-718. · doi:10.1146/annurev.cellbio.21.122303.120306
[12] G.-H. Cottet, Multi-physics and particle methods, Computational Fluid and Solid Mechanics 2003, edited by K.J. Bathe. Elsevier Science Ltd, Oxford (2003) 1296-1298.
[13] G.-H. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16 (2006) 415-438. · Zbl 1088.74050 · doi:10.1142/S0218202506001212
[14] G.H. Cottet, E. Maitre and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: M2AN 42 (2008) 471-492. · Zbl 1163.76040 · doi:10.1051/m2an:2008013
[15] Y. Deguchi, M. Harada, R. Shinohara, M. Lazarus, Y. Cherasse, Y. Urade, D. Yamada, M. Sekiguchi, D. Watanabe, T. Furuyashiki and S. Narumiya, mDia and ROCK mediate actin-dependent presynaptic remodeling regulating synaptic efficacy and anxiety. Cell Reports 17 (2016) 2405-2417. · doi:10.1016/j.celrep.2016.10.088
[16] E. Denicolaï, R. Tesson, C. Ricard, F. Hubert and S. Honoré, Mathematical modeling of the effect of microtubule dynamicsinstability on glioblastoma cells migration (2019).
[17] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203-1249. · Zbl 1086.65108 · doi:10.1051/m2an:2005047
[18] C. Etchegaray, B. Grec, B. Maury, N. Meunier and L. Navoret, An integro-differential equation for 1D cell migration, Integral Methods in Science and Engineering (IMSE) (Karlsruhe, Germany), Integral Methods in Science and Engineering - Theoretical and Computational Advances. Springer (2014) 195-207. · Zbl 1338.92028
[19] S. Etienne-Manneville, Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29 (2013) 471-499. · doi:10.1146/annurev-cellbio-101011-155711
[20] E.E. Evers, G.C.M. Zondag, A Malliri, L.S Price, J.-P. ten Klooster, R.A. van der Kammen and J.G Collard, Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 36 (2000) 1269-1274. · doi:10.1016/S0959-8049(00)00091-5
[21] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Solution of Equation in ℝ^n (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7. Elsevier (2000) 713-1018. · Zbl 0981.65095
[22] O. Friedrich, Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144 (1998) 194-212. · Zbl 1392.76048 · doi:10.1006/jcph.1998.5988
[23] O. Gallinato, M. Ohta, C. Poignard and T. Suzuki, Free boundary problem for cell protrusion formations: theoretical and numerical aspects. J. Math. Biol. 75 (2017) 263-307. · Zbl 1381.92018 · doi:10.1007/s00285-016-1080-7
[24] F. Gibou, R. Fedkiw and S. Osher, A review of level-set methods and some recent applications. J. Comput. Phys. 353 (2018) 82-109. · Zbl 1380.65196 · doi:10.1016/j.jcp.2017.10.006
[25] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279-309. · Zbl 0627.65102 · doi:10.1137/0724022
[26] A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 2 (1986) 347-377. · Zbl 0627.65101 · doi:10.1016/0168-9274(86)90039-5
[27] A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. J. Computat. Phys. 131 (1997) 3-47. · Zbl 0866.65058 · doi:10.1006/jcph.1996.5632
[28] F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481-499. · Zbl 0949.65101 · doi:10.1006/jcph.2000.6466
[29] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150 (1999) 97-127. · Zbl 0926.65090 · doi:10.1006/jcph.1998.6165
[30] F. Hubert, M. Tournus, D. White and S. Honoré, A growth-fragmentation approach for modeling microtubule dynamic instability. Bull. Math. Biol. 81 (2019) 722-758. · Zbl 1415.92073 · doi:10.1007/s11538-018-0531-2
[31] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[32] I. Kaverina and A. Straube, Regulation of cell migration by dynamic microtubules. Semin. Cell. Dev. Biol. (2011).
[33] S. Krell, Stabilized DDFV schemes for stokes problem with variable viscosity on general 2d meshes. Numer. Methods Part. Differ. Equ. 27 (2011) 1666-1706. · Zbl 1426.76389 · doi:10.1002/num.20603
[34] C.D. Lawson and A.J. Ridley, Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol. 217 (2018) 447-457. · doi:10.1083/jcb.201612069
[35] R. Maccioni and N.W. Seeds, Stoichiometry of GTP hydrolysis and tubulin polymerization. Proc. Natl. Acad. Sci. Biochem. (1977).
[36] M.S. Mizuhara, L. Berlyand and I.S. Aronson, Minimal Model of Directed Cell Motility on Patterned Substrates. Preprint arXiv:1705.05990 (2017).
[37] S. Narumiya, M. Tanji and T. Ishizaki, Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metast. Rev. 28 (2009) 65-76. · doi:10.1007/s10555-008-9170-7
[38] A. Nehlig, A. Molina, S. Rodrigues-Ferreira, S. Honoré and C. Nahmias, Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell. Mol. Life Sci. 74 (2017) 2381-2393. · doi:10.1007/s00018-017-2476-2
[39] S. Osher and R.P. Fedkiw, Level set methods: An overview and some recent results. J. Comput. Phys. 169 (2001) 463-502. · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[40] J.S. Park, S.-H. Yoon and C. Kim, Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. J. Comput. Phys. 229 (2010) 788-812. · Zbl 1185.65150 · doi:10.1016/j.jcp.2009.10.011
[41] T.D. Pollard and G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112 (2003) 453-465. · doi:10.1016/S0092-8674(03)00120-X
[42] E.E. Sander, J.P. ten Klooster, S. van Delft, R.A. van der Kammen and J.G. Collard, Rac downregulates rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell. Biol. 147 (1999) 1009-1022. · doi:10.1083/jcb.147.5.1009
[43] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Computat. Phys. 77 (1988) 439-471. · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[44] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146-159. · Zbl 0808.76077
[45] R. Tesson, Modélisation mathématique de l’impact de la dynamique des microtubules sur la migration cellulaire. Ph.D. thesis, Aix-Marseille Université, Marseille, France (2017).
[46] R. Tesson, High-order DDFV method for level-set equations arising in a cell migration model (2019).
[47] B. Vanderlei, J.J. Feng and L. Edelstein-Keshet, A computational model of cell polarization and motility coupling mechanics and biochemistry. Multis. Model. Simul. 9 (2011) 1420-1443. · Zbl 1244.74089 · doi:10.1137/100815335
[48] A.B. Verkhovsky, T.M. Svitkina and G.G. Borisy, Self-polarization and directional motility of cytoplasm. Curr. Biol. 9 (1999) 11-S1. · doi:10.1016/S0960-9822(99)80042-6
[49] T. Watanabe, J. Noritake and K. Kaibuchi, Regulation of microtubules in cell migration. Trends Cell Biol. 15 (2005).
[50] D. White, S. Honoré and F. Hubert, Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability. J. Theor. Biol. 429 (2017) 18-34. · Zbl 1382.92139 · doi:10.1016/j.jtbi.2017.06.014
[51] T. Wittmann and C.M. Waterman-Storer, Cell motility: can rho GTPases and microtubules point the way? J. Cell Sci. 114 (2001) 3795-3803.
[52] M. Yamao, H. Naoki, K. Kunida, K. Aoki, M. Matsuda and S. Ishii, Distinct predictive performance of rac1 and Cdc42 in cell migration. Nat. Sci. Rep. (2015).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.