×

Constrained nonsmooth problems of the calculus of variations. (English) Zbl 1473.49023

Summary: The paper is devoted to an analysis of optimality conditions for nonsmooth multidimensional problems of the calculus of variations with various types of constraints, such as additional constraints at the boundary and isoperimetric constraints. To derive optimality conditions, we study generalised concepts of differentiability of nonsmooth functions called codifferentiability and quasidifferentiability. Under some natural and easily verifiable assumptions we prove that a nonsmooth integral functional defined on the Sobolev space is continuously codifferentiable and compute its codifferential and quasidifferential. Then we apply general optimality conditions for nonsmooth optimisation problems in Banach spaces to obtain optimality conditions for nonsmooth problems of the calculus of variations. Through a series of simple examples we demonstrate that our optimality conditions are sometimes better than existing ones in terms of various subdifferentials, in the sense that our optimality conditions can detect the non-optimality of a given point, when subdifferential-based optimality conditions fail to disqualify this point as non-optimal.

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
49J52 Nonsmooth analysis
90C48 Programming in abstract spaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). · Zbl 0314.46030
[2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). · Zbl 0713.49021
[3] L. Bayón, J.M. Grau, M.M. Ruiz and P.M. Suárez, Nonsmooth optimization of hydrothermal problems. J. Comput. Appl. Math. 192 (2006) 11-19. · Zbl 1088.49010
[4] L. Bayón, J.M. Grau, M.M. Ruiz and P.M. Suárez, A constrained and non-smooth hydrothermal problem. Appl. Math. Comput. 209 (2009) 10-18. · Zbl 1187.80006
[5] L. Bayón, J.M. Grau, M.M. Ruiz and P.M. Suárez, A hydrothermal problem with non-smooth Lagrangian. J. Ind. Manag. Optim. 10 (2014) 761-776. · Zbl 1292.65068
[6] S. Bellaassali, Contributions à l’optimisation multicritère, Ph.D. thesis, Université de Bourgogne, Laboratoire Analyse Appliquée et Optimisation, Dijon, France (2003). Available at: https://tel.archives-ouvertes.fr/file/index/docid/46039/filename/tel-00004421.pdf.
[7] D.N. Bessis, Yu. S. Ledyaev and R.B. Vinter, Dualization of the Euler and Hamiltonian inclusions. Nonlinear Anal. 43 (2001) 861-882. · Zbl 1004.49016
[8] V.I. Bogachev, Vol. I of Measure Theory. Springer-Verlag, Berlin, Heidelberg (2007). · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[9] G. Bonfanti and A. Cellina, The validity of the Euler-Lagrange equation. Discret. Contin. Dyn. Syst. 28 (2010) 511-517. · Zbl 1209.49026
[10] P. Bousquet, The Euler equation in the multiple integrals calculus of variations. SIAM J. Control Optim. 51 (2013) 1047-1062. · Zbl 1268.49021
[11] F. Clarke, Necessary Conditions in Dynamic Optimization. American Mathematical Society, Providence, Rhode Island (2005). · Zbl 1093.49017
[12] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control. Springer-Verlag, London (2013). · Zbl 1277.49001
[13] F.H. Clarke, The Euler-Lagrange differential inclusion. J. Differ. Equ. 19 (1975) 80-90. · Zbl 0323.49021
[14] F.H. Clarke, The generalized problem of Bolza. SIAM J. Control Optim. 14 (1976) 682-699. · Zbl 0333.49023
[15] F.H. Clarke, Multiple integrals of Lipschitz functions in the calculus of variations. Proc. Am. Math. Soc. 64 (1977) 260-264. · Zbl 0411.49015
[16] F.H. Clarke, The Erdmann condition and Hamiltonian inclusions in optimal control and the calculus of variations. Can. J. Math. 32 (1980) 494-509. · Zbl 0461.49007
[17] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). · Zbl 0582.49001
[18] F.H. Clarke, A decoupling principle in the calculus of variations. J. Math. Anal. Appl. 172 (1993) 92-105. · Zbl 0795.49018
[19] F.H. Clarke and M.R. de Pinho, The nonsmooth maximum principle. Control Cybern. 38 (2009) 1151-1167. · Zbl 1236.49048
[20] F.H. Clarke, Yu. S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998). · Zbl 1047.49500
[21] G. Cupini, M. Guidorzi and C. Marcelli, Necessary conditions and non-existence results for autonomous nonconvex variational problems. J. Differ. Equ. 243 (2007) 329-348. · Zbl 1168.49006
[22] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, New York (2008). · Zbl 1140.49001
[23] V.F. Demyanov, Continuous generalized gradients for nonsmooth functions, in Optimization, Parallel Processing and Applications, edited by A. Kurzhanski, K. Neumann and D. Pallaschke. Springer Berlin, Heidelberg (1988) 24-27.
[24] V.F. Demyanov, On codifferentiable functions. Vestn. Leningr. Univ., Math. 2 (1988) 22-26. · Zbl 0655.49008
[25] V.F. Demyanov, Smoothness of nonsmooth functions, in Nonsmooth Optimization and Related Topics, edited by F. Clarke, V. Demyanov and F. Giannesssi. Springer, Boston (1989) 79-88. · Zbl 0738.49010
[26] V.F. Demyanov and L.C.W. Dixon, Quasidifferential Calculus. Springer Berlin, Heidelberg (1986). · Zbl 0583.00012
[27] V.F. Demyanov and A.M. Rubinov, Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995). · Zbl 0887.49014
[28] V.F. Demyanov and A.M. Rubinov, Quasidifferentiability and Related Topics. Kluwer Academic Publishers, Dordrecht (2000). · Zbl 0949.00047
[29] V.F. Demyanov, G.E. Stavroulakis, L.N. Polyakova and P.D. Panagiotopoulos, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics. Kluwer Academic Publishers, Dordrecht (1996). · Zbl 1076.49500
[30] M.V. Dolgopolik, Codifferential calculus in normed spaces. J. Math. Sci. 173 (2011) 441-462. · Zbl 1290.46033
[31] M.V. Dolgopolik, Nonsmooth problems of calculus of variations via codifferentiation. ESAIM: COCV 20 (2014) 1153-1180. · Zbl 1306.49025
[32] M.V. Dolgopolik, Abstract convex approximations of nonsmooth functions. Optim 64 (2015) 1439-1469. · Zbl 1337.49021
[33] M.V. Dolgopolik, A convergence analysis of the method of codifferential descent. Comput. Optim. Appl. 71 (2018) 879-913. · Zbl 1416.90057
[34] M.V. Dolgopolik, Metric regularity of quasidifferentiable mappings and optimality conditions for nonsmooth mathematical programming problems. Set-Valued Var. Anal. 28 (2019) 427-449. · Zbl 1491.90167
[35] M.V. Dolgopolik, A new constraint qualification and sharp optimality conditions for nonsmooth mathematical programming problems in terms of quasidifferentials. SIAM J. Optim. 30 (2020) 2603-2627. · Zbl 1493.90219
[36] N. Dunford and J.T. Schwartz, Linear Operators Part 1: General Theory. John Wiley & Sons, New Jersey (1958). · Zbl 0084.10402
[37] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM, Philadelphia (1999). · Zbl 0939.49002 · doi:10.1137/1.9781611971088
[38] G.B. Folland, Real Analysis. Modern Techniques and Their Applications. Interscience Publishers, New York (1984). · Zbl 0549.28001
[39] Y. Gao, On the minimal quasidifferential in the one-dimensional case. Soochow J. Math. 24 (1998) 211-218. · Zbl 0930.49009
[40] F. Giannessi, A common understanding or a common misunderstanding? Numer. Funct. Anal. Optim. 16 (1995) 1359-1363. · Zbl 0857.49010
[41] J. Grzybowski, D. Pallaschke and R. Urbański, On the reduction of pairs of bounded closed convex sets. Studia Math. 189 (2008) 1-12. · Zbl 1161.52002
[42] J. Grzybowski, D. Pallaschke and R. Urbański, On the amount of minimal pairs of convex sets. Optim. Methods Softw. 25 (2010) 89-96. · Zbl 1192.52001
[43] J. Grzybowski and R. Urbański, Minimal pairs of bounded closed convex sets. Studia Math. 126 (1997) 95-99. · Zbl 0896.52002
[44] J. Grzybowski and R. Urbański, Three criteria of minimality for pairs of compact convex sets. Optim 55 (2006) 569-576. · Zbl 1134.52002
[45] M. Handschug, On equivalent quasidifferentials in the two-dimensional case. Optim 20 (1989) 37-43. · Zbl 0682.49013
[46] A. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Am. Math. Soc. 349 (1997) 2871-2900. · Zbl 0876.49024
[47] A.D. Ioffe, On necessary conditions for a minimum. J. Math. Sci. 217 (2016) 751-772. · Zbl 1350.49029
[48] A.D. Ioffe, On generalized Bolza problems and its application to dynamic optimization. J. Optim. Theory Appl. 182 (2019) 285-309. · Zbl 1420.49027
[49] A.D. Ioffe and R.T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differ. Equ. 4 (1996) 59-87. · Zbl 0838.49015
[50] A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1979). · Zbl 0407.90051
[51] A. Jourani, Lagrangian and Hamiltonian necessary conditions for the generalized Bolza problem and applications. J. Nonlinear Convex Anal. 10 (2009) 437-454. · Zbl 1178.49031
[52] A. Jourani and L. Thibault, Approximate subdifferential and metric regularity: the finite-dimensional case. Math. Program. 47 (1990) 203-218. · Zbl 0714.49023
[53] L. Kuntz, A characterization of continuously codifferentiable functions and some consequences. Optim 22 (1991) 539-547. · Zbl 0733.49016
[54] G. Leoni, A First Course in Sobolev spaces. American Mathematical Society, Providence, RI (2009). · Zbl 1180.46001
[55] P.D. Loewen, Optimal Control via Nonsmooth Analysis. American Mathematical Society, Providence, Rhode Island (1993). · Zbl 0874.49002
[56] P.D. Loewen and R.T. Rockafellar, The adjoint arc in nonsmooth optimization. Trans. Am. Math. Soc. 325 (1991) 39-72. · Zbl 0734.49009
[57] P.D. Loewen and R.T. Rockafellar, Optimal control of unbounded differential inclusions. SIAM J. Control Optim. 32 (1994) 442-470. · Zbl 0823.49016
[58] P.D. Loewen and R.T. Rockafellar, New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34 (1996) 1496-1511. · Zbl 0871.49023
[59] P.D. Loewen and R.T. Rockafellar, Bolza problem with general time constraints. SIAM J. Control Optim. 35 (1997) 2050-2069. · Zbl 0904.49014
[60] C. Marcelli, Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers. SIAM J. Control Optim. 40 (2002) 1473-1490. · Zbl 1030.49022
[61] C. Marcelli, Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints. Trans. Am. Math. Soc. 360 (2008) 5201-5227. · Zbl 1148.49025
[62] C. Marcelli, E. Outkine and M. Sytchev, Remarks on necessary conditions for minimizers of one-dimensional variational problems. Math. Prepr. Arch. 2001 (2001) 1145-1163. · Zbl 1014.49010
[63] B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control. Nauka, Moscow (1988). · Zbl 0643.49001
[64] B.S. Mordukhovich, Discrete approximation and refined Euler-Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Optim. 33 (1995) 882-915. · Zbl 0844.49017
[65] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory. Springer-Verlag, Berling, Heidelberg (2006).
[66] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications. Springer-Verlag, Berling, Heidelberg (2006).
[67] I.V. Orlov and A.V. Tsygankova, Multidimensional variational functionals with subsmooth integrands. Eurasian Math. J. 6 (2015) 54-75. · Zbl 1463.49001
[68] D. Pallaschke and R. Urbański, Some criteria for the minimality of pairs of compact convex sets. ZOR — Methods Models Oper. Res. 37 (1993) 129-150. · Zbl 0781.49011
[69] D. Pallaschke and R. Urbański, Quasidifferentiable calculus and minimal pairs of compact convex sets. Schedae Informaticae 21 (2012) 107-125.
[70] E.S. Polovinkin, Differential inclusions with unbounded right-hand side and necessary optimality conditions. Proc. Stekov Inst. Math. 291 (2015) 237-252. · Zbl 1336.49030
[71] E.S. Polovinkin, Necessary optimality conditions for the Mayer problem with unbounded differential inclusion. IFAC-PapersOnline 51 (2018) 521-524.
[72] E.S. Polovinkin, Pontryagin’s direct method for optimization problems with differential inclusions. Proc. Stekov Inst. Math. 304 (2019) 241-256. · Zbl 1420.49020
[73] B.N. Pshenichnyi, Necessary Conditions for an Extremum. Marcel Dekker, New York (1971). · Zbl 0212.23902
[74] R.T. Rockafellar, Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl. 32 (1970) 174-222. · Zbl 0218.49004
[75] R.T. Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange. Pac. J. Math. 33 (1970) 411-427. · Zbl 0199.43002
[76] R.T. Rockafellar, Existence and duality theorems for convex problems of Bolza. Trans. Am. Math. Soc. 159 (1971) 1-40. · Zbl 0255.49007
[77] R.T. Rockafellar, Dualization of subgradient conditions for optimality. Nonlinear Anal. 20 (1993) 627-646. · Zbl 0786.49012
[78] S. Scholtes, Minimal pairs of convex bodies in two dimensions Mathematika 39 (1992) 267-273. · Zbl 0759.52004 · doi:10.1112/S002557930001500X
[79] M.H.N. Skandari, A.V. Kamyad and S. Effati, Generalized Euler-Lagrange equation for nonsmooth calculus of variations. Nonlinear Dyn. 75 (2014) 85-100. · Zbl 1281.70023
[80] R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems. SIAM J. Control Optim. 35 (1997) 56-77. · Zbl 0870.49014
[81] R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000). · Zbl 0952.49001
[82] A. Zaffaroni, Codifferentiable mappings with applications to vector optimality. Pilska Studia Mathematica Bulgarica 12 (1998) 255-266. · Zbl 0946.49012
[83] A. Zaffaroni, Continuous approximations, codifferentiable functions and minimization methods, in Quasidifferentiability and related Topics, edited by V.F. Demyanov and A.M. Rubinov. Kluwer Academic Publishers, Dordrecht (2000) 361-391. · Zbl 0973.49013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.