×

Numerical bifurcation analysis of renewal equations via pseudospectral approximation. (English) Zbl 1466.92205

Summary: We propose an approximation of nonlinear renewal equations by means of ordinary differential equations. We consider the integrated state, which is absolutely continuous and satisfies a delay differential equation. By applying the pseudospectral approach to the abstract formulation of the differential equation, we obtain an approximating system of ordinary differential equations. We present convergence proofs for equilibria and the associated characteristic roots, and we use some models from ecology and epidemiology to illustrate the benefits of the approach to perform numerical bifurcation analyses of equilibria and periodic solutions. The numerical simulations show that the implementation of the new approximating system can be about ten times more efficient in terms of computational times than the one originally proposed in D. Breda et al. [SIAM J. Appl. Dyn. Syst. 15, No. 1, 1–23 (2016; Zbl 1352.34101)], as it avoids the numerical inversion of an algebraic equation.

MSC:

92D30 Epidemiology
34K18 Bifurcation theory of functional-differential equations
34K08 Spectral theory of functional-differential operators
60K10 Applications of renewal theory (reliability, demand theory, etc.)

Citations:

Zbl 1352.34101
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Diekmann, O.; Getto, P.; Gyllenberg, M., Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39, 4, 1023-1069 (2007) · Zbl 1149.39021
[2] Diekmann, O.; van Gils, S. A.; Verduyn Lunel, S. M.; Walther, H.-O., (Delay Equations. Functional-, Complex-, and Nonlinear Analysis. Delay Equations. Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, vol. 110 (1995), Springer: Springer New York) · Zbl 0826.34002
[3] Diekmann, O.; Gyllenberg, M.; Metz, J. A.J.; Nakaoka, S.; de Roos, A. M., Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example, J. Math. Biol., 61, 2, 277-318 (2010) · Zbl 1208.92082
[4] Breda, D.; Diekmann, O.; Gyllenberg, M.; Scarabel, F.; Vermiglio, R., Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15, 1, 1-23 (2016) · Zbl 1352.34101
[5] Breda, D.; Diekmann, O.; Liessi, D.; Scarabel, F., Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 64, 1-24 (2016) · Zbl 1413.65298
[6] Andò, A.; Breda, D.; Liessi, D.; Maset, S.; Scarabel, F.; Vermiglio, R., 15 years or so of pseudospectral collocation methods for stability and bifurcation of delay equations, (Advances on Delays and Dynamics (2020), Springer: Springer New York), in press
[7] de Wolff, B.; Scarabel, F.; Verduyn-Lunel, S.; Diekmann, O., Pseudospectral approximation of Hopf bifurcation for delay differential equations, SIAM J. Appl. Dyn. Syst., 20, 1, 333-370 (2021) · Zbl 1470.34185
[8] Diekmann, O.; Scarabel, F.; Vermiglio, R., Pseudospectral discretization of delay differential equations in sun-star formulation: results and conjectures, Discrete Contin. Dyn. Syst. Ser. S, 13, 9, 2575-2602 (2020) · Zbl 1450.65061
[9] Getto, P.; Gyllenberg, M.; Nakata, Y.; Scarabel, F., Stability analysis of a state-dependent delay differential equation for cell maturation: analytical and numerical methods, J. Math. Biol., 79, 1, 281-328 (2019) · Zbl 1470.92105
[10] Scarabel, F.; Breda, D.; Diekmann, O.; Gyllenberg, M.; Vermiglio, R., Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation, Vietnam J. Math., 49, 37-67 (2021) · Zbl 1464.35375
[11] Gyllenberg, M.; Scarabel, F.; Vermiglio, R., Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333, 490-505 (2018) · Zbl 1427.65098
[12] Diekmann, O.; Gyllenberg, M., Equations with infinite delay: Blending the abstract and the concrete, J. Differential Equations, 252, 2, 819-851 (2012) · Zbl 1237.34133
[13] Diekmann, O.; Verduyn Lunel, S., Twin semigroups and delay equations, J. Differential Equations, 286, 332-410 (2021) · Zbl 1472.34120
[14] Krylov, V. I., Convergence of algebraic interpolation with respect to the roots of Chebyshev’s polynomial for absolutely continuous functions and functions of bounded variation, Dokl. Akad. Nauk SSSR (N.S.), 107, 362-365 (1956), (in russian) · Zbl 0071.05703
[15] Mastroianni, G.; Milovanović, G. V., (Interpolation Processes. Basic Theory and Applications. Interpolation Processes. Basic Theory and Applications, Springer Monographs in Mathematics (2008), Springer: Springer Berlin) · Zbl 1154.41001
[16] Trefethen, L. N., Approximation Theory and Approximation Practice (2013), SIAM: SIAM Philadelphia · Zbl 1264.41001
[17] Andò, A.; Breda, D., Collocation techniques for structured population modeled by delay equations, (Aguiar, M.; Braumann, C.; Kooi, B. W.; Pugliese, A.; Stollenwerk, N.; Venturino, E., Current Trends in Dynamical Systems in Biology and Natural Sciences. Current Trends in Dynamical Systems in Biology and Natural Sciences, SEPA SIMAI Springer series (2020), Springer), 43-62 · Zbl 1447.37077
[18] Andò, A.; Breda, D.; Scarabel, F., Numerical continuation and delay equations: A novel approach for complex models of structured populations, Discrete Contin. Dyn. Syst. Ser. S, 13, 9, 2619-2640 (2020) · Zbl 1450.65059
[19] de Roos, A. M., PSPManalysis: Steady-state and bifurcation analysis of physiologically structured population models, Methods Ecol. Evol., 12, 383-390 (2021)
[20] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G.; Sautois, B., New features of the software matcont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14, 2, 147-175 (2008) · Zbl 1158.34302
[21] Trefethen, L. N., (Spectral Methods in MATLAB. Spectral Methods in MATLAB, Softw. Environm. Tools (2000), SIAM: SIAM Philadelphia) · Zbl 0953.68643
[22] Diekmann, O.; Montijn, R., Prelude to Hopf bifurcation in an epidemic model: analysis of a characteristic equation associated with a nonlinear Volterra integral equation, J. Math. Biol., 14, 1, 117-127 (1982) · Zbl 0487.92023
[23] Gurney, W.; Blythe, S.; Nisbet, R., Nicholson’s blowflies revisited, Nature, 287, 5777, 17-21 (1980)
[24] Engelborghs, K.; Luzyanina, T.; Samaey, G., DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential EquationsTechnical Report TW-330 (2001), Department of Computer Science: Department of Computer Science K.U.Leuven, Leuven, Belgium
[25] Engelborghs, K.; Luzyanina, T.; Samaey, G.; Roose, D.; Verheyden, K., DDE-BIFTOOL: a MATLAB package for bifurcation analysis of delay differential equations (2018), accessed: 21.05.2018. URL http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
[26] Breda, D.; Diekmann, O.; Maset, S.; Vermiglio, R., A numerical approach for investigating the stability of equilibria for structured population models, J. Biol. Dyn., 7, sup1, 4-20 (2013) · Zbl 1448.92178
[27] Xu, K., The Chebyshev points of the first kind, Appl. Numer. Math., 102, 17-30 (2016) · Zbl 1334.65055
[28] Mastroianni, G.; Russo, M. G., Some new results on lagrange interpolation for bounded variation functions, J. Approx. Theory, 162, 7, 1417-1428 (2010) · Zbl 1194.41007
[29] Breda, D.; Maset, S.; Vermiglio, R., (Stability of Linear Delay Differential Equations, A Numerical Approach with MATLAB. Stability of Linear Delay Differential Equations, A Numerical Approach with MATLAB, SpringerBriefs in Control, Automation and Robotics (2015), Springer: Springer New York) · Zbl 1315.65059
[30] Kress, R.; Maz’ya, V.; Kozlov, V., Linear Integral Equations, Vol. 82 (1989), Springer · Zbl 0671.45001
[31] Davis, P. J., (Interpolation and Approximation. Interpolation and Approximation, Dover Books on Mathematics (1975), Dover Publications) · Zbl 0329.41010
[32] Rudin, W., Real and Complex Analysis (2006), Tata McGraw-hill education
[33] Priestley, H. A., Introduction to Complex Analysis (2003), OUP Oxford · Zbl 1127.30002
[34] Breda, D.; Maset, S.; Vermiglio, R., Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27, 2, 482-495 (2005) · Zbl 1092.65054
[35] Weideman, J. A.C.; Reddy, S. C., A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 26, 4, 465-519 (2000)
[36] Breda, D.; Liessi, D., Floquet theory and stability of periodic solutions of renewal equations, J. Dynam. Differential Equations (2020)
[37] Fontana, I., Numerical Bifurcation of Equations with Infinite Delay Via Pseudospectral Collocation (2018), University of Udine, (Master’s thesis)
[38] Breda, D.; Getto, P.; Sánchez Sanz, J.; Vermiglio, R., Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37, 6, 2607-2629 (2015) · Zbl 1335.92072
[39] Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 3, 501-517 (2004) · Zbl 1061.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.