×

Parametric stitching for smooth coupling of subdomains with non-matching discretizations. (English) Zbl 1506.65035

Summary: Incompatible parametric subdomains are common in computer-aided design (CAD) and in computer-aided engineering (CAE). In this paper, we present a unified formulation to smoothly couple non-matching parametric domains for both geometric modeling and analysis of behavior. The key concept used to accomplish the coupling is a “parametric stitching” or \(p\)-stitching interface between the incompatible patches. Specifically, \(p\)-stitching permits independently varying fields with assured, arbitrary smoothness at the interface between the coupled subdomains. The developed procedure enables modular construction of coupling problems with compatible interfaces as well as the ability to characterize sharp changes in gradient, as at dissimilar material interfaces. Fundamental to the developed methodology is enriched field approximations. The base approximations in the subdomains are enriched by the interfacial fields constructed as a function of distance from the coupling interfaces. The proposed method is argued to be the smooth extension of the dual-primal method such as the localized version of the Lagrange multiplier method. In the present paper, non-uniform rational B-splines (NURBS) are chosen for discretizing the parametric subdomains. The developed procedure though is valid for other representations of subdomains whose basis functions obey partition of unity. We validate the proposed method through patch tests and demonstrate the approach on several two- and three-dimensional elastostatic as well as heat conduction numerical examples.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)

Software:

GeoPDEs; Matlab; NURBS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sederberg, T. W.; Anderson, D. C.; Goldman, R. N., Implicit representation of parametric curves and surfaces, Comput. Vis. Graph. Image Process., 28, 1, 72-84 (1984) · Zbl 0601.65008
[2] Catmull, E.; Clark, J., Recursively generated B-spline surfaces on arbitrary topological meshes, Comput. Aided Des., 10, 6, 350-355 (1978), URL http://www.sciencedirect.com/science/article/pii/0010448578901100
[3] Doo, D.; Sabin, M., Behaviour of recursive division surfaces near extraordinary points, Comput. Aided Des., 10, 6, 356-360 (1978), URL http://www.sciencedirect.com/science/article/pii/0010448578901112
[4] Cirak, F.; Scott, M. J.; Antonsson, E. K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 2, 137-148 (2002), URL http://www.sciencedirect.com/science/article/pii/S0010448501000616
[5] Mortenson, M. E., Geometric Modeling (1997), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, NY, USA
[6] Forsey, D. R.; Bartels, R. H., Hierarchical B-spline refinement, ACM SIGGRAPH Comput. Graph., 22, 4, 205-212 (1988)
[7] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-NURCCs, ACM Trans. Graph., 22, 3, 477-484 (2003)
[8] Sederberg, T. W.; Cardon, D. L.; Finnigan, G. T.; North, N. S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM Trans. Graph., 23, 3, 276-283 (2004)
[9] Deng, J.; Chen, F.; Li, X.; Hu, C.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 4, 76-86 (2008)
[10] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, Geometric Modeling and Processing 2012. Geometric Modeling and Processing 2012, Comput. Aided Geom. Design, 29, 7, 485-498 (2012) · Zbl 1252.65030
[11] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356 (2013) · Zbl 1264.41011
[12] Thomas, D. C.; Engvall, L.; Schmidt, S. K.; Tew, K.; Scott, M. A., U-splines: splines over unstructured meshes. Unpublished preprint (2018), URL https://coreform.com/usplines
[13] Kim, H.-J.; Seo, Y.-D.; Youn, S.-K., Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Engrg., 198, 37, 2982-2995 (2009) · Zbl 1229.74131
[14] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Computational Geometry and Analysis. Computational Geometry and Analysis, Comput. Methods Appl. Mech. Engrg., 199, 5, 229-263 (2010) · Zbl 1227.74123
[15] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Computational Geometry and Analysis. Computational Geometry and Analysis, Comput. Methods Appl. Mech. Engrg., 199, 5, 264-275 (2010) · Zbl 1227.74125
[16] Cohen, E.; Martin, T.; Kirby, R. M.; Lyche, T.; Riesenfeld, R. F., Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis, Computational Geometry and Analysis. Computational Geometry and Analysis, Comput. Methods Appl. Mech. Engrg., 199, 5, 334-356 (2010) · Zbl 1227.74109
[17] Schmidt, R.; Kiendl, J.; Bletzinger, K.-U.; Wüchner, R., Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis, Comput. Vis. Sci., 13, 7, 315-330 (2010) · Zbl 1216.65019
[18] Li, X.; Zheng, J.; Sederberg, T. W.; Hughes, T. J.R.; Scott, M. A., On linear independence of T-spline blending functions, Geometric Constraints and Reasoning. Geometric Constraints and Reasoning, Comput. Aided Geom. Design, 29, 1, 63-76 (2012) · Zbl 1251.65012
[19] Beirão da Veiga, L.; Buffa, A.; Cho, D.; Sangalli, G., Analysis-suitable T-splines are dual-compatible, Higher Order Finite Element and Isogeometric Methods. Higher Order Finite Element and Isogeometric Methods, Comput. Methods Appl. Mech. Engrg., 249-252, 42-51 (2012) · Zbl 1348.65048
[20] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213-216, 206-222 (2012) · Zbl 1243.65030
[21] Massarwi, F.; Elber, G., A B-spline based framework for volumetric object modeling, SPM 2016. SPM 2016, Comput. Aided Des., 78, 36-47 (2016)
[22] Lagrange, J. L., Mechanique Analytique (1788), Veuve Desaint
[23] Simo, J. C.; Wriggers, P.; Taylor, R. L., A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 50, 2, 163-180 (1985) · Zbl 0552.73097
[24] Park, K. C.; Felippa, C. A.; Gumaste, U. A., A localized version of the method of Lagrange multipliers and its applications, Comput. Mech., 24, 6, 476-490 (2000) · Zbl 0961.74077
[25] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hamburg, 36, 1, 9-15 (1971) · Zbl 0229.65079
[26] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[27] Natekar, D.; Zhang, X.; Subbarayan, G., Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis, Comput. Aided Des., 36, 5, 473-486 (2004)
[28] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49, 3902-3914 (2009) · Zbl 1231.74422
[29] Kiendl, J.; Bazilevs, Y.; Hsu, M. C.; Wüchner, R.; Bletzinger, K. U., The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Engrg., 199, 37, 2403-2416 (2010) · Zbl 1231.74482
[30] Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., Isogeometric analysis of trimmed NURBS geometries, Comput. Methods Appl. Mech. Engrg., 241-244, 93-111 (2012) · Zbl 1353.74079
[31] Lu, J., Isogeometric contact analysis: Geometric basis and formulation for frictionless contact, Comput. Methods Appl. Mech. Engrg., 200, 5, 726-741 (2011) · Zbl 1225.74097
[32] Temizer, İ.; Wriggers, P.; Hughes, T. J.R., Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 9, 1100-1112 (2011) · Zbl 1225.74126
[33] De Lorenzis, L.; Temizer, İ.; Wriggers, P.; Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg., 87, 13, 1278-1300 (2011) · Zbl 1242.74104
[34] Temizer, İ.; Wriggers, P.; Hughes, T. J.R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209-212, 115-128 (2012) · Zbl 1243.74130
[35] De Lorenzis, L.; Wriggers, P.; Zavarise, G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1, 1-20 (2012) · Zbl 1356.74146
[36] Bazilevs, Y.; Hsu, M. C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Higher Order Finite Element and Isogeometric Methods. Higher Order Finite Element and Isogeometric Methods, Comput. Methods Appl. Mech. Engrg., 249-252, 28-41 (2012) · Zbl 1348.74094
[37] Hsu, M.-C.; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: simulating the full machine, Comput. Mech., 50, 6, 821-833 (2012) · Zbl 1311.74038
[38] Hesch, C.; Betsch, P., Isogeometric analysis and domain decomposition methods, Comput. Methods Appl. Mech. Engrg., 213-216, 104-112 (2012) · Zbl 1243.74182
[39] Apostolatos, A.; Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 7, 473-504 (2014) · Zbl 1352.74315
[40] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
[41] Ruess, M.; Schillinger, D.; Özcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[42] Nguyen, T.; Karčiauskas, K.; Peters, J., A comparative study of several classical, discrete differential and isogeometric methods for solving Poisson’s equation on the disk, Axioms, 3, 2, 280-299 (2014) · Zbl 1311.68175
[43] Kapl, M.; Vitrih, V.; Jüttler, B.; Birner, K., Isogeometric analysis with geometrically continuous functions on two-patch geometries, Comput. Math. Appl., 70, 7, 1518-1538 (2015) · Zbl 1443.65346
[44] Collin, A.; Sangalli, G.; Takacs, T., Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces, Comput. Aided Geom. Design, 47, 93-113 (2016) · Zbl 1418.65017
[45] Toshniwal, D.; Speleers, H.; Hughes, T. J., Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations, Comput. Methods Appl. Mech. Engrg., 327, 411-458 (2017) · Zbl 1439.65017
[46] Blidia, A.; Mourrain, B.; Xu, G., Geometrically smooth spline bases for data fitting and simulation, Comput. Aided Geom. Design, 78, Article 101814 pp. (2020) · Zbl 1472.65015
[47] Tambat, A.; Subbarayan, G., Isogeometric enriched field approximations, Comput. Methods Appl. Mech. Engrg., 245-246, 1-21 (2012) · Zbl 1354.65044
[48] Upreti, K.; Song, T.; Tambat, A.; Subbarayan, G., Algebraic distance estimations for enriched isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 280, 28-56 (2014) · Zbl 1425.65036
[49] Upreti, K.; Subbarayan, G., Signed algebraic level sets on NURBS surfaces and implicit Boolean compositions for isogeometric CAD-CAE integration, Comput. Aided Des., 82, 112-126 (2017)
[50] Rayasam, M.; Srinivasan, V.; Subbarayan, G., CAD inspired hierarchical partition of unity constructions for NURBS-based, meshless design, analysis and optimization, Internat. J. Numer. Methods Engrg., 72, 12, 1452-1489 (2007) · Zbl 1194.74310
[51] Piegl, L. A.; Tiller, W., (The NURBS Book. The NURBS Book, Monographs in visual communication (1997), Springer) · Zbl 0868.68106
[52] Cox, M. G., The numerical evaluation of B-splines, IMA J. Appl. Math., 10, 2, 134-149 (1972) · Zbl 0252.65007
[53] de Boor, C., On calculating with B-splines, J. Approx. Theory, 6, 1, 50-62 (1972) · Zbl 0239.41006
[54] De Boor, C., (A practical guide to splines. A practical guide to splines, Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 27 (1978), Springer-Verlag: Springer-Verlag New York) · Zbl 0406.41003
[55] Melenk, J. M.; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 1, 289-314 (1996) · Zbl 0881.65099
[56] Song, T.; Upreti, K.; Subbarayan, G., A sharp interface isogeometric solution to the stefan problem, Isogeometric Analysis Special Issue. Isogeometric Analysis Special Issue, Comput. Methods Appl. Mech. Engrg., 284, 556-582 (2015) · Zbl 1425.65121
[57] Chen, Y.; Jois, C.; Subbarayan, G., Meshfree CAD-CAE integration through immersed B-rep model and enriched iso-geometric analysis, Comput.-Aided Des. Appl., 17, 1193-1214 (2020)
[58] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 2, 229-256 (1994) · Zbl 0796.73077
[59] Biswas, A.; Shapiro, V., Approximate distance fields with non-vanishing gradients, Graph. Models, 66, 3, 133-159 (2004) · Zbl 1068.68152
[60] Toga, A. W.; Payne, B. A., Distance field manipulation of surface models, IEEE Comput. Graph. Appl., 12, 01, 65-71 (1992)
[61] Liao, H.; Vaitheeswaran, P.; Song, T.; Subbarayan, G., Algebraic point projection for immersed boundary analysis on low degree NURBS curves and surfaces, Algorithms, 13, 1-25 (2020)
[62] MATLAB, H., Version 9.6.0 (R2019a) (2019), The MathWorks Inc.: The MathWorks Inc. Natick, Massachusetts
[63] de Falco, C.; Reali, A.; Vázquez, R., GeoPDEs: A research tool for Isogeometric Analysis of PDEs, Adv. Eng. Softw., 42, 12, 1020-1034 (2011) · Zbl 1246.35010
[64] M. Spink, D. Claxton, C. de Falco, R. Vázquez, The NURBS toolbox, URL http://octave.sourceforge.net/nurbs/index.html.
[65] Timoshenko, S.; Goodier, J. N., (Theory of Elasticity. Theory of Elasticity, Engineering societies monographs (1951), McGraw-Hill: McGraw-Hill New York) · Zbl 0045.26402
[66] Park, K. C.; Felippa, C. A., A variational framework for solution method developments in structural mechanics, J. Appl. Mech., 65, 1, 242-249 (1998)
[67] Park, K. C.; Felippa, C. A., A variational principle for the formulation of partitioned structural systems, Internat. J. Numer. Methods Engrg., 47, 1-3, 395-418 (2000) · Zbl 0988.74032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.