×

Noise-induced kinetic transition in two-component environment. (English) Zbl 1460.82018

Summary: The problem of diffusion through the fluctuating medium, where processes of substance disintegration and reproduction are possible, was posed at the end of the last century. It was established that the action of multiplicative external noise on a system can result in qualitative reorganization of its dynamical behavior. When such reorganization leads to the appearance of a new stationary dynamic mode, it is customary to speak about a noise-induced phase or kinetic transition. In this paper the noise-induced kinetic transition in two-component environment where the interacting components have contrasting lifetimes and diffusion coefficients is considered. It is shown that the presence of an additional long-lived component can lead to a dramatic decrease in the system generation threshold. We called this effect the depository reproduction. Analytical consideration of the diffusion process in a fluctuating medium causes enormous difficulties even for a single component substance. Meanwhile, in some cases of practical interest, the problem consideration can be conducted using stochastic geometry and percolation theory in particular. In the present work the noise-induced kinetic transition in two-component distributed systems is studied by the tools of directed percolation. To present the depository reproduction effect more vividly we use a new numeral grossone that allows to express different infinitesimal and infinite numerals. It was shown that the reverse conversion of the long-lived component to the short-lived one ensures the survival of the system at significantly lower concentrations of production centers.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C43 Time-dependent percolation in statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mikhallov, A. S.; Uporov, I. V., Noise-induced phase transition and the percolation problem for fluctuating media with diffusion, Sov. Phys.—JETP, 52, 5, 989-996 (1980)
[2] Iudin, D. I.; Rakov, V. A.; Syssoev, A. A.; Bulatov, A. A.; Hayakawa, M.; decimeter scale, Formation.of., Formation of decimeter-scale long-lived elevated ionic conductivity regions in thunderclouds, NPJ Clim. Atmos. Sci., 2, 46 (2019)
[3] Kubo, R., A stochastic theory of line-shape and relaxation, (ter Haar, D., Flucutation, Relaxation and Resonance in Magnetic Systems (1962), Oliver and Boyd: Oliver and Boyd Edingburgh), 23 · Zbl 0108.22606
[4] Horsthemke, W.; Lefever, R., Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (2006), Springer-Verlag Berlin and Heidelberg GmbH & Co. KG: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Berlin · Zbl 0529.60085
[5] Sergeyev, Y., Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them (2009), eU patent 1728149
[6] Sergeyev, Y. (2004), http://www.theinfinitycomputer.com
[7] Falcone, A.; Garro, A.; Mukhametzhanov, M.; Sergeyev, Y., Representation of grossone-based arithmetic in simulink for scientific computing, Soft Comput. (2020)
[8] Sergeyev, Y., Using blinking fractals for mathematical modeling of processes of growth in biological systems, Informatica, 22, 4, 559-576 (2011) · Zbl 1268.37092
[9] Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M.; Sergeyev, Y., Computation of higher order Lie derivatives on the infinity computer, J. Comput. Appl. Math., 383, Article 113135 pp. (2021) · Zbl 1451.65090
[10] Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Y. D., Conjugate-symplecticity properties of Euler-Maclaurin methods and their implementation on the infinity computer, Appl. Numer. Math., 155, 58-72 (2020) · Zbl 1440.65273
[11] Sergeyev, Y. D., Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surv. Math . Sci., 2, 4, 219-320 (2017) · Zbl 1390.03048
[12] Margenstern, M., Using grossone to count the number of elements of infinite sets and the connection with bijections, p-adic numbers, Ultrametric Anal. Appl., 3, 3, 196-204 (2011) · Zbl 1259.03064
[13] Montagna, F.; Simi, G.; Sorbi, A., Taking the Pirahã seriously, Commun. Nonlinear Sci. Numer. Simul., 21, 1-3, 52-69 (2015) · Zbl 1401.03110
[14] Sergeyev, Y. D., Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite, Found. Sci., 24, 1, 153-170 (2019) · Zbl 1428.03076
[15] Cococcioni, M.; Pappalardo, M.; Sergeyev, Y. D., Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm, Appl. Math. Comput., 318, 298-311 (2018) · Zbl 1426.90226
[16] Cococcioni, M.; Cudazzo, A.; Pappalardo, M.; Sergeyev, Y. D., Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology, Commun. Nonlinear Sci. Numer. Simul., 84, Article 105177 pp. (2020) · Zbl 1451.90140
[17] Cococcioni, M.; Pappalardo, M.; Sergeyev, Y. D., Towards lexicographic multi-objective linear programming using grossone methodology, (Sergeyev, Y. D.; Kvasov, D. E.; Dell’Accio, F.; Mukhametzhanov, M. S., Proc. of the 2nd Intern. Conf. Numerical Computations: Theory and Algorithms, Vol. 1776 (2016), AIP Publishing: AIP Publishing New York), Article 090040 pp.
[18] De Leone, R.; Fasano, G.; Sergeyev, Y. D., Planar methods and grossone for the conjugate gradient breakdown in nonlinear programming, Comput. Optim. Appl., 71, 73-93 (2018) · Zbl 1465.90123
[19] De Cosmis, S.; De Leone, R., The use of grossone in mathematical programming and operations research, Appl. Math. Comput., 218, 16, 8029-8038 (2012) · Zbl 1273.90117
[20] De Leone, R., Nonlinear programming and grossone: Quadratic programming and the role of constraint qualifications, Appl. Math. Comput., 318, 290-297 (2018) · Zbl 1426.90235
[21] Gaudioso, M.; Giallombardo, G.; Mukhametzhanov, M. S., Numerical infinitesimals in a variable metric method for convex nonsmooth optimization, Appl. Math. Comput., 318, 312-320 (2018) · Zbl 1426.90197
[22] Sergeyev, Y. D.; Kvasov, D. E.; Mukhametzhanov, M. S., On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales, Commun. Nonlinear Sci. Numer. Simul., 59, 319-330 (2018) · Zbl 1510.90292
[23] Caldarola, F., The Sierpinski curve viewed by numerical computations with infinities and infinitesimals, Appl. Math. Comput., 318, 321-328 (2018) · Zbl 1426.28016
[24] Sergeyev, Y. D., Numerical infinities applied for studying Riemann series theorem and Ramanujan summation, (AIP Conference Proceedings of ICNAAM 2017, 1978 (2018), AIP Publishing: AIP Publishing New York), Article 020004 pp.
[25] Caldarola, F.; Maiolo, M.; Solferino, V., A new approach to the Z-transform through infinite computation, Commun. Nonlinear Sci. Numer. Simul., 82, Article 105019 pp. (2020) · Zbl 1459.40007
[26] Zhigljavsky, A., Computing sums of conditionally convergent and divergent series using the concept of grossone, Appl. Math. Comput., 218, 16, 8064-8076 (2012) · Zbl 1254.03123
[27] Caldarola, F., The exact measures of the Sierpinski d-dimensional tetrahedron in connection with a Diophantine nonlinear system, Commun. Nonlinear Sci. Numer. Simul., 63, 228-238 (2018) · Zbl 1508.52004
[28] D’Alotto, L., Cellular automata using infinite computations, Appl. Math. Comput., 218, 16, 8077-8082 (2012) · Zbl 1252.37017
[29] D’Alotto, L., A classification of one-dimensional cellular automata using infinite computations, Appl. Math. Comput., 255, 15-24 (2015) · Zbl 1338.68177
[30] D’Alotto, L., A classification of two-dimensional cellular automata using infinite computations, Indian J. Math., 55, 143-158 (2013) · Zbl 1371.37017
[31] Sergeyev, Y. D., The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area, Commun. Nonlinear Sci. Numer. Simul., 31, 1-3, 21-29 (2016) · Zbl 1467.28011
[32] Antoniotti, L.; Caldarola, F.; Maiolo, M., Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves, Mediterr. J. Math., 17, 99 (2020) · Zbl 1484.28003
[33] Iudin, D.; Sergeyev, Y. D.; Hayakawa, M., Interpretation of percolation in terms of infinity computations, Appl. Math. Comput., 218, 16, 8099-8111 (2012) · Zbl 1252.82059
[34] Iudin, D. I.; Sergeyev, Y. D.; Hayakawa, M., Infinity computations in cellular automaton forest-fire model, Commun. Nonlinear Sci. Numer. Simul., 20, 3, 861-870 (2015)
[35] Margenstern, M., Fibonacci words, hyperbolic tilings and grossone, Commun. Nonlinear Sci. Numer. Simul., 21, 1-3, 3-11 (2015) · Zbl 1329.37012
[36] Sergeyev, Y. D.; Garro, A., Single-tape and multi-tape turing machines through the lens of the grossone methodology, J. Supercomput., 65, 2, 645-663 (2013)
[37] De Leone, R.; Fasano, G.; Roma, M.; Sergeyev, Y., Iterative grossone-based computation of negative curvature directions in large-scale optimization, J. Optim. Theory Appl., 186, 554-589 (2020) · Zbl 1450.90009
[38] Rizza, D., A study of mathematical determination through Bertrand’s Paradox, Philos. Math., 26, 3, 375-395 (2018) · Zbl 1423.60008
[39] Rizza, D., Numerical methods for infinite decision-making processes, Int. J. Unconv. Comput., 14, 2, 139-158 (2019)
[40] Calude, C. S.; Dumitrescu, M., Infinitesimal probabilities based on grossone, SN Comput. Sci., 1, 36 (2020)
[41] Amodio, P.; Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Y. D., A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic, Math. Comput. Simulation, 141, 24-39 (2017) · Zbl 07313861
[42] Sergeyev, Y. D., Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer, Appl. Math. Comput., 219, 22, 10668-10681 (2013) · Zbl 1303.65061
[43] Bunde, A.; Halvin, S., Fractals and Disordered Systems (1995), Springer: Springer Berlin
[44] Saberi, A. A., Recent advances in percolation theory and its applications, Phys. Rep., 578, 1-32 (2006) · Zbl 1357.82032
[45] Hayakawa, M.; Iudin, D.; Mareev, E.; Trakhtengerts, V., Cellular automaton modeling of mesospheric optical emissions: Sprites, Phys. Plasmas, 14, 042902 (2007)
[46] Syssoev, A.; Iudin, D.; Bulatov, A.; Rakov, V., Numerical simulation of stepping and branching processes in negative lightning leaders, J. Geophys. Res.: Atmos., 125, 7, Article e2019JD031360 pp. (2020)
[47] Lubeck, S.; Willmann, R. D., Universal scaling behaviour of directed percolation and the pair contact process in an external field, J. Phys. A, 35, 48, 10205 (2002) · Zbl 1040.82032
[48] Wang, J.; Zhou, Z.; Liu, Q.; Garoni, T.; Deng, Y., High-precision Monte Carlo study of directed percolation in (d+1) dimensions, Phys. Rev. E, 88, Article 042102 pp. (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.