×

Late-time asymptotic behavior of solutions to hyperbolic conservation laws on the sphere. (English) Zbl 1441.58015

Summary: We consider nonlinear hyperbolic conservation laws posed on a curved geometry, referred to as “geometric Burgers equations” after M. Ben-Artzi and P. G. LeFloch [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24, No. 6, 989–1008 (2007; Zbl 1138.35055)], when the underlying geometry is the sphere and the flux vector field is determined from a potential function. Despite its apparent simplicity, this model exhibits complex wave phenomena which are not observed in absence of geometrical effects. To study the late-time asymptotic behavior of the solutions of this model, we consider a finite volume method based on a generalized Riemann solver. We provide a numerical validation of the accuracy and efficiency of the method in presence of nonlinear waves and a curved geometry and, especially, demonstrate the contraction, time-variation monotonicity, and entropy monotonicity properties. The late-time asymptotic behavior of the solutions is studied and discussed in terms of the properties of the flux. A new classification of the flux vector field is introduced where we distinguish between foliated flux and generic flux, and the character of linearity of the flux which are expected to be sufficient to predict the late-time asymptotic behavior of the solutions. When the flux is foliated and linear, the solutions are transported in time within the level sets of the potential. If the flux is foliated and is genuinely nonlinear, the solutions converge to their (constant) average within each level set. For generic flux, the solutions evolve with large variations which depend on the geometry and converge to constant values within certain “independent” domains on the sphere. The number of constant values depends on curves that “split” the sphere into independent domains. For fluxes which are linear, foliated or generic only on parts of the sphere, combinations of the late-time asymptotic behavior of the solutions can be obtained which depends also on the interaction between the fluxes at boundaries of these parts of the sphere.

MSC:

58J70 Invariance and symmetry properties for PDEs on manifolds
35B40 Asymptotic behavior of solutions to PDEs
35L65 Hyperbolic conservation laws
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1138.35055

Software:

chammp
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bale, D.; LeVeque, R. J.; Mitran, S.; Rossmanith, J. A., A wave-propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM J. Sci. Comput., 24, 955-978 (2002) · Zbl 1034.65068
[2] Dafermos, C. M., (Hyperbolic conservation laws in continuum physics. Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, vol. 325 (2000), Springer Verlag: Springer Verlag Berlin) · Zbl 0940.35002
[3] LeFloch, P. G., (Hyperbolic Systems of Conservation Laws. Hyperbolic Systems of Conservation Laws, Lectures in Mathematics (2002), ETH Zürich, Birkhäuser) · Zbl 1019.35001
[4] Langseth, J. O.; LeVeque, R. J., A wave-propagation method for three-dimensional hyperbolic conservation laws, J. Comput. Phys., 165, 126-166 (2000) · Zbl 0967.65095
[5] LeFloch, P. G.; Makhlof, H.; Okutmustur, B., Relativistic burgers equations on curved spacetimes. Derivation and finite volume approximation, SIAM J. Numer. Anal., 50, 2136-2158 (2012) · Zbl 1258.35143
[6] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 346-365 (1998) · Zbl 0931.76059
[7] LeVeque, R. J., Finite Volume Methods for Hperbolic Problems (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[8] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279 (1961)
[9] Russo, G., Central schemes for conservation laws with application to shallow water equations, (Rionero, S.; Romano, G., Trends and Applications of Mathematics to Mechanics: STAMM 2002 (2005), Springer Verlag: Springer Verlag Italy), 225-246
[10] Russo, G., High-order shock-capturing schemes for balance laws, (Numerical Solutions of Partial Differential Equations. Numerical Solutions of Partial Differential Equations, Adv. Courses Math. CRM Barcelona (2009), Birkhäuser: Birkhäuser Basel), 59-147 · Zbl 1159.65001
[11] Calhoun, D. A.; Helzel, C.; LeVeque, R. J., Logically rectangular finite volume grids and methods for ‘circular’ and ‘spherical’ domains, SIAM Rev., 50, 723-752 (2008) · Zbl 1155.65061
[12] Giraldo, F. X., Lagrange-Galerkin Methods on spherical geodesic grids: the shallow water equations, J. Comput. Phys., 160, 336-368 (2000) · Zbl 0977.76045
[13] Katta, K. K.; Nair, R. D.; Kumar, V., High-order finite-volume transport on the cubed sphere: comparison between 1D and 2D reconstruction schemes, Mon. Weather Rev., 143, 2937-2954 (2015)
[14] LeFloch, P. G.; Makhlof, H., A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime, Commun. Comput. Phys., 15, 827-852 (2014) · Zbl 1373.76135
[15] Ronchi, C.; Acono, R.; Paolucci, P. S., The cubed sphere: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 93-114 (1996) · Zbl 0849.76049
[16] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211-224 (1992) · Zbl 0756.76060
[17] Haltiner, G. J., Numerical Weather Prediction (1971), John Wiley Press
[18] Ben-Artzi, M.; LeFloch, P. G., Well posedness theory for geometry compatible hyperbolic conservation laws on manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 989-1008 (2007) · Zbl 1138.35055
[19] Amorim, P.; Ben-Artzi, M.; LeFloch, P. G., Hyperbolic conservation laws on manifolds: Total variation estimates and finite volume method, Methods Appl. Anal., 12, 291-324 (2005) · Zbl 1114.35121
[20] Amorim, P.; LeFloch, P. G.; Okutmustur, B., Finite volume schemes on Lorentzian manifolds, Commun. Math. Sci., 6, 1059-1086 (2008) · Zbl 1179.35027
[21] Ben-Artzi, M.; Falcovitz, J.; LeFloch, P. G., Hyperbolic conservation laws on the sphere. a geometry-compatible finite volume scheme, J. Comput. Phys., 228, 5650-5668 (2009) · Zbl 1168.65372
[22] LeFloch, P. G., Hyperbolic conservation laws on spacetimes, (Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications, IMA Math. Appl, vol. 153 (2011), Springer: Springer New York), 379-391 · Zbl 1248.35124
[23] LeFloch, P. G.; Okutmustur, B., Hyperbolic conservation laws on spacetimes. a finite volume scheme based on differential forms, Far East J. Math. Sci., 31, 49-83 (2008) · Zbl 1178.35250
[24] Dziuk, D.; Kroöner, D.; Müller, T., Scalar conservation laws on moving hypersurfaces, Interface Free Bound, 15, 203-236 (2013) · Zbl 1350.35115
[25] Giesselmann, J., A convergence result for finite volume schemes on Riemannian manifolds, Math. Model. Numer. Anal., 43, 929-955 (2009) · Zbl 1173.74454
[26] Giesselmann, J.; Mueller, T., Geometric error of finite volume schemes for conservation laws on evolving surfaces, Numer. Math., 128, 489-516 (2014) · Zbl 1306.65250
[27] Dziuk, G.; Elliott, C. M., Finite elements on evolving surfaces, IMA J. Numer. Anal., 27, 262-292 (2007) · Zbl 1120.65102
[28] Hirani, A. N., Discrete Exterior Calculus (2003), California Institute of Technology, Dissertation (Ph.D.)
[29] LeFloch, P. G.; Neves, W.; Okutmustur, B., Hyperbolic conservation laws on manifolds. error estimate for finite volume schemes, Acta Math. Sin., 25, 7, 1041-1066 (2009) · Zbl 1178.35251
[30] LeFloch, P. G., Hyperbolic conservation laws and spacetimes with limited regularity, (Benzoni, S.; Serre, D., Proc. 11th Inter. Confer. on Hyper. Problems: Theory, Numerics, and Applications (2006), Springer Verlag: Springer Verlag ENS Lyon), 679-686 · Zbl 1140.35301
[31] LeFloch, P. G.; Okutmustur, B., Conservation laws on manifolds with limited regularity, C.R. Acad. Sc. Paris, Ser. I, 346, 539-543 (2008) · Zbl 1145.35428
[32] Kruzkov, S. N., First-order quasilinear eequations in several independent variables, Math. USSR Sb., 10, 217-242 (1970) · Zbl 0215.16203
[33] Ben-Artzi, M.; Falcovitz, J., Generalized Riemann Problems in Computational Fluid Dynamics (2003), Cambridge University Press: Cambridge University Press London · Zbl 1017.76001
[34] LeFloch, P. G.; Raviart, P.-A., An asymptotic expansion for the solution of the generalized Riemann problem. Part I. General theory, Ann. Inst. H. Poincaré, Nonlinear Anal., 5, 179-207 (1988) · Zbl 0679.35064
[35] Bourgeade, A.; LeFloch, P. G.; Raviart, P.-A., An asymptotic expansion for the solution of the generalized Riemann problem. Part II. Application to the gas dynamics equations, Ann. Inst. H. Poincaré, Nonlin. Anal., 6, 437-480 (1989) · Zbl 0703.35106
[36] Berger, M. J.; Calhoun, D. A.; Helzel, C.; LeVeque, R. J., Logically rectangular finite volume methods with adaptive refinement on the sphere, Philos. Trans. R. Soc. Lond. Ser. A, 367, 4483-4496 (2009) · Zbl 1192.76028
[37] Giraldo, F. X., High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere, J. Comput. Phys., 214, 447-465 (2006) · Zbl 1089.65096
[38] Giraldo, F. X.; Warburton, T., A nodal triangle-based spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 207, 129-150 (2005) · Zbl 1177.86002
[39] Rossmanith, A.; Bale, D. S.; LeVeque, R. J., A wave propagation algorithm for hyperbolic systems on curved manifolds, J. Comput. Phys., 199, 631-662 (2004) · Zbl 1126.76350
[40] Rossmanith, A., A wave propagation method for hyperbolic systems on the sphere, J. Comput. Phys., 213, 629-658 (2006) · Zbl 1089.65088
[41] Vázquez-Cendón, M.-E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. Comput. Phys., 148, 497-526 (1999) · Zbl 0931.76055
[42] Cea, L.; Vázquez-Cendón, M.-E., Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations, J. Comput. Phys., 231, 3317-3339 (2012) · Zbl 1402.76077
[43] Bona, J. L.; Dougalis, V. A.; Karakashian, O. A.; McKinney, W. R.; Conservative, High-order numerical schemes for the generalized Korteweg – de Vries equation, Phil. Trans. Roy. Soc. Lond. Ser. A, 351, 107-164 (1995) · Zbl 0824.65095
[44] Beljadid, A.; Mohammadian, A.; Kurganov, A., Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows, Comput. Fluids (Elsevier), 136, 193-206 (2016) · Zbl 1390.76395
[45] Hernandez-Duenas, G.; Beljadid, A., A central-upwind scheme with artificial viscosity for shallow-water flows in channels, Adv. Water Resour. (Elsevier), 96, 323-338 (2016)
[46] Liu, X.; Beljadid, A., A coupled numerical model for water flow, sediment transport and bed erosion, Comput. Fluids (Elsevier), 154, 273-284 (2017) · Zbl 1390.76478
[47] Kurganov, A.; Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numer. Methods Partial Differential Equations, 21, 536-552 (2005) · Zbl 1071.65122
[48] Beljadid, A.; LeFloch, P. G., A central-upwind geometry-preserving method for hyperbolic conservation laws on the sphere, Commun. Appl. Math. Comput. Sci., 12, 81-107 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.