×

Unified polynomial expansion for interval and random response analysis of uncertain structure-acoustic system with arbitrary probability distribution. (English) Zbl 1441.65008

Summary: For structure-acousticsystem with uncertainties, the interval model, the random model and the hybrid uncertain model have been introduced. In the interval model and the random model, the uncertain parameters are described as either the random variable with well defined probability density function (PDF) or the interval variable without any probability information, whereas in the hybrid uncertain model both interval variable and random variable exist simultaneously. For response analysis of these three uncertain models of structure-acoustic problem involving arbitrary PDFs, a unified polynomial expansion method named as the Interval and Random Arbitrary Polynomial Chaos method (IRAPCM) is proposed. In IRAPCM, the response of the structure-acoustic system is approximated by APC expansion in a unified form. Particularly, only the weight function of polynomial basis is required to be changed to construct the APC expansion for the response of different uncertain models. Through the unified APC expansion, the uncertain properties of the response of three uncertain models can be efficiently obtained. As the APC expansion can provide a free choice of the polynomial basis, the optimal polynomial basis for the random variable with arbitrary PDFs can be obtained by using the proposed IRAPCM. The IRAPCM has been employed to solve a mathematical problem and a structure-acoustic problem, and the effectiveness of the unified IRAPCM for response analysis of three uncertain models is demonstrated by fully comparing it with the hybrid first-order perturbation method and several existing polynomial chaos methods.

MSC:

65C20 Probabilistic models, generic numerical methods in probability and statistics
60G99 Stochastic processes

Software:

OPQ
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Neffske, D. J.; Wolf Jr., J. A.; Howell, L. J., Structural-acoustic fiite element analysis of the automobile passenger compartment: A review of current practice, J. Sound Vib., 80, 247-266 (1982)
[2] Langley, R. S.; Cotoni, V., Response variance prediction for uncertain vibro-acoustic systems using a hybrid deterministic-statistical method, J. Acoust. Soc. Am., 122, 6, 3445-3463 (2007)
[3] Xia, B.; Yu, D.; Liu, J., Hybrid uncertain analysis for structural-acoustic problem with random and interval parameters, J. Sound Vib., 332, 11, 2701-2720 (2013)
[4] Cicirello, A.; Langley, R. S., The vibro-acoustic analysis of built-up systems using a hybrid method with parametric and non-parametric uncertainties, J. Sound Vib., 332, 9, 2165-2178 (2013)
[5] Yin, S.; Yu, D.; Huang, Y., Hybrid chebyshev interval finite-element and statistical energy analysis method for midfrequency analysis of built-up systems with interval uncertainties, J. Eng. Mech., 142, 10, 04016071 (2016)
[6] Meyer, V.; Maxit, L.; Audoly, C., Influence of stiffeners and internal structures on the vibroacoustic behavior of submerged cylindrical shells under random excitations, J. Acoust. Soc. Am., 140, 4, 3159-3160 (2016)
[7] Secgin, A. J.; Dunne, F.; Zoghaib, L., Extreme-value-based statistic bounding of low, mid, and high frequency responses of a forced plate with random boundary conditions, J. Vib. Acoust., 134, 2, 021003 (2012)
[8] Caflisch, R. E., Monte Carlo and Quasi-Monte Carlo methods, Acta Numer., 7, 2, 1-49 (1998) · Zbl 0949.65003
[9] Ichchou, M. N.; Bouchoucha, F.; Ben Souf, M. A.; Dessombz, O.; Haddar, M., Stochastic wave finite element for random periodic media through first-order perturbation, Comput. Methods Appl. Mech. Engrg., 200, 2805-2813 (2011) · Zbl 1230.74182
[10] Kamiński, M., Stochastic second-order perturbation approach to the stress based finite element method, Int. J. Solids Struct., 38, 3831-3852 (2001) · Zbl 0981.74066
[11] Doltsinis, I.; Kang, Z., Perturbation-based stochastic FE analysis and robust design of inelastic deformation processes, Comput. Methods Appl. Mech. Engrg., 195, 2231-2251 (2006) · Zbl 1128.74042
[12] Hua, X. G.; Ni, Y. Q.; Chen, Z. Q.; Ko, J. M., An improved perturbation method for stochastic finite element model updating, Internat. J. Numer. Methods Engrg., 73, 1845-1864 (2007) · Zbl 1195.74177
[13] Ghanem, R. G.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0722.73080
[14] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187, 1, 137-167 (2003) · Zbl 1047.76111
[15] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2002) · Zbl 1014.65004
[16] M.S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, in: AIAA 2009-2274, 50th Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 2009.; M.S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, in: AIAA 2009-2274, 50th Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 2009.
[17] Panayirci, H. M.; Schuëller, G. I., On the capabilities of the polynomial chaos expansion method within SFE analysis-an overview, Arch. Comput. Methods Eng., 18, 1, 43-55 (2011) · Zbl 1284.74129
[18] Witteveen, J. A.S.; Sarkar, S.; Bijl, H., Modeling physical uncertainties in dynamic stall induced fluidstructure interaction of turbine blades using arbitrary polynomial chaos, Comput. Struct., 85, 866-887 (2007)
[19] Rao, S. S.; Berke, L., Analysis of uncertain structural systems using interval analysis, AIAA J., 35, 4, 727-735 (1997) · Zbl 0902.73082
[20] Qiu, Z.; Elishakoff, I., Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis, Comput. Methods Appl. Mech. Engrg., 152, 3, 361-372 (1998) · Zbl 0947.74046
[21] Moore, R. E.; Kearfott, R. B.; Cloud, M. J., Introduction To Interval Analysis (2009), SIAM · Zbl 1168.65002
[22] Yin, H.; Yu, D.; Yin, S.; Xia, B., Fuzzy interval finite element/statistical energy analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters, J. Sound Vib., 380, 192-212 (2016)
[23] Moens, D.; Vandepitte, D., A fuzzy finite element procedure for the calculation of uncertain frequency response functions of damped structures: Part 1-procedure, J. Sound Vib., 288, 3, 431-462 (2005)
[24] Bae, H. R.; Grandhi, R. V.; Canfield, R. A., Epistemic uncertainty quantification techniques including evidence theory for large-scale structures, Comput. & Structures, 82, 13-14, 1101-1112 (2004)
[25] Jiang, C.; Zhang, Z.; Han, X.; Liu, J., A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty, Comput. Struct., 129, 1-12 (2013)
[26] Yin, S.; Yu, D.; Yin, H.; Xia, B., A new evidence-theory-based method for response analysis of acoustic system with epistemic uncertainty by using Jacobi expansion, Comput. Methods Appl. Mech. Engrg., 322, 1, 419-440 (2017) · Zbl 1439.76148
[27] Chen, N.; Yu, D.; Xia, B., Uncertainty analysis of a structural – acoustic problem using imprecise probabilities based on p-box representations, Mech. Syst. Signal Process., 80, 45-57 (2016)
[28] Simon, C.; Bicking, F., Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks, Reliab. Eng. Syst. Saf. (2017)
[29] Qiu, Z. P.; Chen, S. H.; Elishakoff, I., Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters, Chaos Solitons Fractals, 7, 3, 425-434 (1996)
[30] Xia, B.; Yu, D., Modified interval perturbation finite element method for a structural-acoustic system with interval parameters, J. Appl. Mech., 80, 4, 041027 (2013)
[31] Xia, B.; Yu, D., Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters, J. Sound Vib., 331, 16, 3774-3790 (2012)
[32] Wu, J.; Zhang, Y.; Chen, L., A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Appl. Math. Model., 37, 4578-4591 (2013) · Zbl 1269.93031
[33] Xu, M.; Du, J.; Wang, C., A dimension-wise analysis method for the structural-acoustic system with interval parameters, J. Sound Vib., 394, 418-433 (2017)
[34] Gao, W., Interval natural frequency and mode shape analysis for truss structures with interval parameters, Finite Elem. Anal. Des., 42, 471-477 (2006)
[35] Qiu, Z. P.; Xia, Y. Y.; Yang, J. L., The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem, Comput. Methods Appl. Mech. Engrg., 196, 4965-4984 (2007) · Zbl 1173.74355
[36] Sofi, A.; Romeo, E., A novel interval finite element method based on the improved interval analysis, Comput. Methods Appl. Mech. Engrg., 311, 671-697 (2016) · Zbl 1439.65194
[37] Impollonia, N.; Muscolino, G., Interval analysis of structures with uncertain-but-bounded axial stiffness, Comput. Methods Appl. Mech. Engrg., 200, 21-22, 1945-1962 (2011) · Zbl 1228.74120
[38] Moens, D.; Hanss, M., Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances, Finite Elem. Anal. Des., 47, 1, 4-16 (2011)
[39] Elishakoff, I.; Colombi, P.; Elishakoff, I., Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters, Comput. Methods Appl. Mech. Engrg., 104, 187-209 (1993) · Zbl 0812.73036
[40] Xia, B.; Yu, D.; Han, Xu, Unified response probability distribution analysis of two hybrid uncertain acoustic fields, Comput. Methods Appl. Mech. Engrg., 276, 7, 20-34 (2014) · Zbl 1423.76410
[41] Muscolino, G.; Santoro, R.; Sofi, A., Reliability analysis of structures with interval uncertainties under stationary stochastic excitations, Comput. Methods Appl. Mech. Engrg., 300, 47-69 (2016) · Zbl 1425.74029
[42] Gao, W.; Wu, D.; Song, C.; Tin-Loi, F.; Li, X., Hybrid probabilistic interval analysis of Bar structures with uncertainty using a mixed perturbation Monte-Carlo method, Finite Elem. Anal. Des., 47, 643-652 (2011)
[43] Wang, C.; Qiu, Z., Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters, Int. J. Heat Mass Transfer, 80, 80, 319-328 (2015)
[44] Chen, N.; Yu, D.; Xia, B., Hybrid uncertain analysis for the prediction of exterior acoustic field with interval and random parameters, Comput. Struct., 141, 9-18 (2014)
[45] Wu, J.; Luo, Z.; Zhang, N., A new uncertain analysis method and its application in vehicle dynamics, Mech. Syst. Signal Process., 50- 51, 659-675 (2015)
[46] Wu, J.; Luo, Z.; Li, H., Level-set topology optimization for mechanical metamaterials under hybrid uncertainties, Comput. Methods Appl. Mech. Engrg., 319, 414-441 (2017) · Zbl 1439.74302
[47] Yin, S.; Yu, D.; Yin, H.; Xia, B., Interval and random analysis for structure – acoustic systems with large uncertain-but-bounded parameters, Comput. Methods Appl. Mech. Engrg., 305, 910-935 (2016) · Zbl 1425.74509
[48] Wang, M.; Huang, Q., A new hybrid uncertain analysis method for structural-acoustic systems with random and interval parameters, Comput. Struct., 175, 15-28 (2016)
[49] Xu, M.; Du, J.; Wang, C., Hybrid uncertainty propagation in structural-acoustic systems based on the polynomial chaos expansion and dimension-wise analysis, Comput. Methods Appl. Mech. Engrg., 320, 198-217 (2017) · Zbl 1439.74142
[50] Xiu, D.; Karniadakis, G. E., A new stochastic approach to transient heat conduction modeling with uncertainty, Inter. J. Heat Mass Trans., 46, 4681-4693 (2003) · Zbl 1038.80003
[51] J.A.S. Witteveen, H. Bijl, Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos, in: AIAA 2006-896, 44th Aerospace Sciences Meeting and Exhibit, Reno, 2006.; J.A.S. Witteveen, H. Bijl, Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos, in: AIAA 2006-896, 44th Aerospace Sciences Meeting and Exhibit, Reno, 2006.
[52] Oladyshkin, S.; Nowak, W., Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliab. Eng. Syst. Saf., 106, 179-190 (2012)
[53] Ahlfeld, R.; Belkouchi, B.; Montomoli, F., SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos, J. Comput. Phys., 320, 1-16 (2016) · Zbl 1349.65417
[54] Gautschi, W., Orthogonal Polynomials: Computation and Approximation (2004), Oxford University Press: Oxford University Press Oxford · Zbl 1130.42300
[55] Waldvogel, J., Fast construction of the Fejér and Clenshaw-Curtis quadrature rules, Bit Numer. Math., 46, 1, 195-202 (2006) · Zbl 1091.65028
[56] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (1975), Academic Press: Academic Press New York · Zbl 0304.65016
[57] Ma, X. P.; Wu, C. L.; Fang, T., A complementary note on Gegenbauer polynomial approximation for random response problem of stochastic structure, Probab. Eng. Mech., 21, 410-419 (2006)
[58] Szegö, G., (Orthogonal Polynomials. Orthogonal Polynomials, Colloquium Publications, vol. 23 (1975), American Mathematical Society) · Zbl 0305.42011
[59] Bhunia, A. K.; Sahoo, L.; Roy, D., Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm, Appl. Math. Comput., 216, 3, 929-939 (2010) · Zbl 1189.65125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.