×

Continuum analysis of rarefaction effects on a thermally induced gas flow. (English) Zbl 1435.76065

Summary: A Maxwell gas confined within a micro cavity with nonisothermal walls is investigated in the slip and early transition regimes using the classical and extended continuum theories. The vertical sides of the cavity are kept at the uniform and environmental temperature \(T_0\), while the upper and bottom ones are linearly heated in opposite directions from the cold value \(T_0\) to the hot one \(T_H\). The gas flow is, therefore, induced only by the temperature gradient created along the longitudinal walls. The problem is treated from a macroscopic point of view by solving numerically the so-called regularized 13-moment equations (R13) recently developed as an extension of Grad 13-moment theory to the third order of the Knudsen number powers in the Chapman-Enskog expansion. The gas macroscopic properties obtained by this method are compared with the classical continuum theory results (NSF) using the first and second order of velocity slip and temperature jump boundary conditions. The gas flow behavior is studied as a function of the Knudsen number \((K n)\), nonlinear effects, for different heating rates \(T_0 / T_H\). The micro cavity aspect ratio effect is also evaluated on the flow fields in this study.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics

Software:

dugksFoam; OpenFOAM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Graur, I. A.; Polikarpov, A. P., Comparison of different kinetic models for the heat transfer problem, Heat and Mass Transfer, 46, 2, 237-244 (2009) · doi:10.1007/s00231-009-0558-x
[2] Stone, H. A.; Stroock, A. D.; Ajdari, A., Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annual Review of Fluid Mechanics, 36, 381-411 (2004) · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[3] Yang, H.-A.; Wu, M.; Fang, W., Localized induction heating solder bonding for wafer level MEMS packaging, Journal of Micromechanics and Microengineering, 15, 2, 394-399 (2005) · doi:10.1088/0960-1317/15/2/020
[4] Marques, W.; Kremer, G. M.; Sharipov, F. M., Couette flow with slip and jump boundary conditions, Continuum Mechanics and Thermodynamics, 12, 6, 379-386 (2000) · Zbl 0970.76086 · doi:10.1007/s001610050143
[5] Mizzi, S.; Emerson, D. R.; Stefanov, S. K.; Barber, R. W.; Reese, J. M., Effects of rarefaction on cavity flow in the slip regime, Journal of Computational and Theoretical Nanoscience, 4, 4, 817-822 (2007) · doi:10.1166/jctn.2007.2374
[6] Sharipov, F., Data on the velocity slip and temperature jump on a gas-solid interface, Journal of Physical and Chemical Reference Data, 40, 2, 1-28 (2011) · doi:10.1063/1.3580290
[7] Beskok, A.; Karniadakis, G. E., Simulation of heat and momentum transfer in complex microgeometries, Journal of Thermophysics and Heat Transfer, 8, 4, 647-655 (1994) · doi:10.2514/3.594
[8] Roohi, E., DSMC Simulations of Nanoscale and Microscale Gas Flow, Encyclopedia of Microfluidics and Nanofluidics (2013), New York, NY, USA: Springer Science+Business Media, New York, NY, USA
[9] Roohi, E.; Darbandi, M.; Mirjalili, V., DSMC Solution of Subsonic Flow through Micro-Nano Scale Channels, Journal of Heat Transfer, 131, 9, 092402 (2009) · doi:10.1115/1.3139105
[10] Fan, J.; Shen, C., Statistical simulation of low-speed rarefied gas flows, Journal of Computational Physics, 167, 2, 393-412 (2001) · Zbl 1052.76055 · doi:10.1006/jcph.2000.6681
[11] Moghadam, E. Y.; Roohi, E.; Esfahani, J. A., Heat transfer and fluid characteristics of rarefied flow in thermal cavities, Vacuum, 109, 1, 333-340 (2014) · doi:10.1016/j.vacuum.2014.06.009
[12] Sharipov, F.; Seleznev, V., Data on internal rarefied gas flows, Journal of Physical and Chemical Reference Data, 27, 3, 657-706 (1998) · doi:10.1063/1.556019
[13] Sharipov, F., Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates, European Journal of Mechanics - B/Fluids, 21, 1, 113-123 (2002) · Zbl 1001.76093 · doi:10.1016/S0997-7546(01)01160-8
[14] Garcia, R. D.; Siewert, C. E., The linearized Boltzmann equation with Cercignani-Lampis boundary conditions: Basic flow problems in a plane channel, European Journal of Mechanics - B/Fluids, 28, 3, 387-396 (2009) · Zbl 1167.76360 · doi:10.1016/j.euromechflu.2008.12.001
[15] Rana, A.; Torrilhon, M.; Struchtrup, H., Heat transfer in micro devices packaged in partial vacuum, Journal of Physics: Conference Series, 362, 1 (2012) · doi:10.1088/1742-6596/362/1/012034
[16] Zhu, L.; Chen, S.; Guo, Z., dugksFoam: An open source OpenFOAM solver for the Boltzmann model equation, Computer Physics Communications, 213, 155-164 (2017) · Zbl 1376.76037 · doi:10.1016/j.cpc.2016.11.010
[17] Kosuge, S.; Aoki, K.; Takata, S.; Hattori, R.; Sakai, D., Steady flows of a highly rarefied gas induced by nonuniform wall temperature, Physics of Fluids, 23, 3 (2011)
[18] Vargas, M.; Tatsios, G.; Valougeorgis, D.; Stefanov, S., Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls, Physics of Fluids, 26, 5 (2014)
[19] Mohammadzadeh, A.; Rana, A. S.; Struchtrup, H., Thermal stress vs. thermal transpiration: A competition in thermally driven cavity flows, Physics of Fluids, 27, 11 (2015)
[20] Sone, Y., Molecular Gas Dynamics: Theory, Techniques, and Applications (2007), Springer Science & Business Media · Zbl 1144.76001
[21] Sharipov, F., Rarefied Gas Dynamics: Fundamentals for Research and Practice (2016), Wiley-VCH
[22] Birur, G. C.; Waniewski, S. T.; Paris, A. D.; Shakkottai, P.; Green, A. A., Micro/nano spacecraft thermal control using a MEMS-based pumped liquid cooling system, Proceedings of the Micromachining and Microfabrication, International Society for Optics and Photonics · doi:10.1117/12.443059
[23] Rana, A. S.; Mohammadzadeh, A.; Struchtrup, H., A numerical study of the heat transfer through a rarefied gas confined in a microcavity, Continuum Mechanics and Thermodynamics, 27, 3, 433-446 (2015) · Zbl 1341.76021 · doi:10.1007/s00161-014-0371-8
[24] Struchtrup, H., Macroscopic Transport Equations for Rarefied Gas Flows (2005), New York: Springer, New York · Zbl 1119.76002
[25] Sone, Y., A simple demonstration of a rarefied gas flow induced over a plane wall with a temperature gradient, Physics of Fluids, 3, 5, 997-998 (1991) · doi:10.1063/1.857981
[26] Grad, H., Physica A: Statistical Mechanics and its Applications (1949), Mimeographed notes, New York University
[27] Struchtrup, H.; Torrilhon, M., Regularization of Grad’s 13 moment equations: derivation and linear analysis, Physics of Fluids, 15, 9, 2668-2680 (2003) · Zbl 1186.76504 · doi:10.1063/1.1597472
[28] Mizzi, S.; Gu, X. J.; Emerson, D. R.; Barber, R. W.; Reese, J. M., Computational framework for the regularized 20-moment equations for non-equilibrium gas flows, International Journal for Numerical Methods in Fluids, 56, 8, 1433-1439 (2008) · Zbl 1148.76043 · doi:10.1002/fld.1747
[29] Rana, A.; Torrilhon, M.; Struchtrup, H., A robust numerical method for the R13 equations of rarefied gas dynamics: application to lid driven cavity, Journal of Computational Physics, 236, 1, 169-186 (2013) · Zbl 1286.76130 · doi:10.1016/j.jcp.2012.11.023
[30] Torrilhon, M.; Struchtrup, H., Boundary conditions for regularized 13-moment equations for micro-channel flows, Journal of Computational Physics, 227, 3, 1982-2011 (2008) · Zbl 1132.76049 · doi:10.1016/j.jcp.2007.10.006
[31] Mohammadzadeh, A.; Struchtrup, H., Velocity dependent Maxwell boundary conditions in DSMC, International Journal of Heat and Mass Transfer, 87, 151-160 (2015) · doi:10.1016/j.ijheatmasstransfer.2015.03.045
[32] Baliti, J.; Hssikou, M.; Alaoui, M., The 13-moments method for heat transfer in gas microflows, Australian Journal of Mechanical Engineering, 1-14 (2017) · doi:10.1080/14484846.2017.1407468
[33] Baliti, J.; Hssikou, M.; Alaoui, M., Numerical simulation of heat transfer in a micro-cavity, Canadian Journal of Physics, 95, 1, 85-94 (2016) · doi:10.1139/cjp-2016-0528
[34] Torrilhon, M.; Struchtrup, H., Regularized 13-moment equations: shock structure calculations and comparison to Burnett models, Journal of Fluid Mechanics, 513, 171-198 (2004) · Zbl 1107.76069 · doi:10.1017/S0022112004009917
[35] Karniadakis, G.; Beskok, A.; Aluru, N., Micro Flows: Fundamentals and Simulation (2005), Springer · Zbl 1115.76003
[36] Kogan, M. N.; Galkin, V. S.; Fridlender, O. G., Stresses produced in gasses by temperature and concentration inhomogeneities. New types of free convection, Soviet Physics Uspekhi, 19, 5, 420-428 (1976) · doi:10.1070/PU1976v019n05ABEH005261
[37] Papadopoulos, D. H.; Rosner, D. E., Enclosure gas flows driven by non-isothermal walls, Physics of Fluids, 7, 11, 2535-2537 (1995) · Zbl 1026.76553 · doi:10.1063/1.868703
[38] Hssikou, M.; Baliti, J.; Alaoui, M., Extended macroscopic study of dilute gas flow within a microcavity, Modelling and Simulation in Engineering, 2016 (2016) · doi:10.1155/2016/7619746
[39] Hssikou, M.; Baliti, J.; Alaoui, M., The planar Couette flow with slip and jump boundary conditions in a microchannel, Monte Carlo Methods and Applications, 22, 4, 337-347 (2016) · Zbl 1404.76233 · doi:10.1515/mcma-2016-0117
[40] Rana, A. S.; Struchtrup, H., Thermodynamically admissible boundary conditions for the regularized 13 moment (R13) equations, Physics of Fluids, 28 (2016)
[41] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hardsphere molecules, Physics of Fluids A. Fluid Dynamics, 1, 1588-1599 (1989) · Zbl 0695.76032
[42] Bobylev, A. V., Quasistationary hydrodynamics for the Boltzmann equation, Journal of Statistical Physics, 80, 5-6, 1063-1083 (1995) · Zbl 1081.82612 · doi:10.1007/BF02179864
[43] Yariv, E., Thermophoresis due to strong temperature gradients, SIAM Journal on Applied Mathematics, 69, 2, 453-472 (2008) · Zbl 1166.76302 · doi:10.1137/070711219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.