×

Traveling waves for spatially discrete systems of FitzHugh-Nagumo type with periodic coefficients. (English) Zbl 1432.34084

Summary: We establish the existence and nonlinear stability of traveling wave solutions for a class of lattice differential equations (LDEs) that includes the discrete FitzHugh-Nagumo system with alternating scale-separated diffusion coefficients. In particular, we view such systems as singular perturbations of spatially homogeneous LDEs, for which stable traveling wave solutions are known to exist in various settings. The two-periodic waves considered in this paper are described by singularly perturbed multicomponent functional differential equations of mixed type (MFDEs). In order to analyze these equations, we generalize the spectral convergence technique that was developed by Bates, Chen, and Chmaj to analyze the scalar Nagumo LDE. This allows us to transfer several crucial Fredholm properties from the spatially homogeneous to the spatially periodic setting. Our results hence do not require the use of comparison principles or exponential dichotomies.

MSC:

34K10 Boundary value problems for functional-differential equations
34A33 Ordinary lattice differential equations
34K08 Spectral theory of functional-differential operators
34K26 Singular perturbations of functional-differential equations
34K31 Lattice functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P. W. Bates, X. Chen, and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), pp. 520-546. · Zbl 1050.37041
[2] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Vol. 2, Oxford University Press, Oxford, 2003. · Zbl 1109.74002
[3] P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, J. Phys. A, 45 (2011).
[4] P. C. Bressloff, Waves in Neural Media: From Single Neurons to Neural Fields, Lect. Notes Math. Model. Life Sci., Springer, New York, 2014. · Zbl 1296.92005
[5] M. Brucal-Hallare and E. S. Van Vleck, Traveling wavefronts in an antidiffusion lattice Nagumo model, SIAM J. Appl. Dyn. Syst., 10 (2011), pp. 921-959. · Zbl 1236.39005
[6] J. W. Cahn and A. Novick-Cohen, Evolution equations for phase separation and ordering in binary alloys, J. Stat. Phys., 76 (1994), pp. 877-909. · Zbl 0840.35110
[7] J. W. Cahn and E. S. Van Vleck, On the co-existence and stability of trijunctions and quadrijunctions in a simple model, Acta Mater., 47 (1999), pp. 4627-4639.
[8] G. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations, 23 (1977), pp. 335-367. · Zbl 0341.35007
[9] P. Carter, B. de Rijk, and B. Sandstede, Stability of traveling pulses with oscillatory tails in the FitzHugh-Nagumo system, J. Nonlinear Sci., 26 (2016), pp. 1369-1444. · Zbl 1361.35024
[10] P. Carter and B. Sandstede, Fast pulses with oscillatory tails in the FitzHugh-Nagumo system, SIAM J. Math. Anal., 47 (2015), pp. 3393-3441. · Zbl 1327.35008
[11] C. Chen and Y. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calc. Var. Partial Differential Equations, 54 (2015), pp. 1-45. · Zbl 1328.34037
[12] X. Chen, J. S. Guo, and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), pp. 189-236. · Zbl 1152.37033
[13] P. Cornwell, Opening the Maslov Box for Traveling Waves in Skew-Gradient Systems, preprint, arXiv:1709.01908, 2017.
[14] P. Cornwell and C. K. R. T. Jones, On the existence and stability of fast traveling waves in a doubly diffusive FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 754-787. · Zbl 1406.35041
[15] E. D’Este, D. Kamin, F. Göttfert, A. El-Hady, and S. E. Hell, STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons, Cell Rep., 10 (2015), pp. 1246-1251.
[16] E. D’Este, D. Kamin, C. Velte, F. Göttfert, M. Simons, and S. E. Hell, Subcortical cytoskeleton periodicity throughout the nervous system, Sci. Rep., 6 (2016), 22741.
[17] J. J. Duistermaat and J. A. Kolk, Multidimensional Real Analysis I: Differentiation, Cambridge Stud. Adv. Math. 86, Cambridge University Press, Cambridge, 2004. · Zbl 1077.26001
[18] T. E. Faver, Nanopteron-sTegoton Traveling Waves in Spring Dimer Fermi-Pasta-Ulam-Tsingou Lattices, preprint, arXiv:1710.07376, 2017. · Zbl 1458.37079
[19] T. E. Faver and J. D. Wright, Exact Diatomic Fermi-Pasta-Ulam-Tsingou Solitary Waves with Optical Band Ripples at Infinity, SIAM J. Math. Anal., 50 (2018), pp. 182-250. · Zbl 1381.37092
[20] G. Faye and A. Scheel, Existence of pulses in excitable media with nonlocal coupling, Adv. Math., 270 (2015), pp. 400-456. · Zbl 1304.35187
[21] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1966), pp. 445-466.
[22] R. FitzHugh, Mathematical models of excitation and propagation in nerve, in Biological Engineering, McGraw Hill, New York, 1969.
[23] R. FitzHugh, Motion picture of nerve impulse propagation using computer animation, J. Appl. Physiology, 25 (1968), pp. 628-630.
[24] J. S. Guo and C.-C. Wu, Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system, J. Differential Equations, 246 (2009), pp. 489-525.
[25] S. Hastings, On travelling wave solutions of the Hodgkin-Huxley equations, Arch. Ration. Mech. Anal., 60 (1976), pp. 229-257. · Zbl 0374.35004
[26] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiology, 117 (1952).
[27] A. Hoffman and J. D. Wright, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), pp. 33-59. · Zbl 1378.35067
[28] H. J. Hupkes, L. Morelli, and P. Stehlik, Bichromatic Travelling Waves for Lattice Nagumo Equations, preprint, arXiv:1805.10977, 2018. · Zbl 1428.34029
[29] H. J. Hupkes and B. Sandstede, Travelling pulse solutions for the discrete FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 827-882. · Zbl 1211.34007
[30] H. J. Hupkes and B. Sandstede, Stability of pulse solutions for the discrete FitzHugh-Nagumo system, Trans. Amer. Math. Soc., 365 (2013), pp. 251-301. · Zbl 1271.34008
[31] H. J. Hupkes and E. S. Van Vleck, Travelling Waves for Adaptive Grid Discretizations of Reaction-Diffusion Systems, preprint. · Zbl 1497.34108
[32] H. J. Hupkes and E. S. Van Vleck, Travelling waves for complete discretizations of reaction diffusion systems, J. Dynam. Differential Equations, 28 (2016), pp. 955-1006. · Zbl 1353.34094
[33] C. K. R. T. Jones, Stability of the travelling wave solutions of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc, 286 (1984), pp. 431-469. · Zbl 0567.35044
[34] C. K. R. T. Jones, N. Kopell, and R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, in Patterns and Dynamics in Reactive Media, H. Swinney, G. Aris, and D. G. Aronson, eds., IMA Vol. Math. Appl. 37, Springer, New York, 1991, pp. 101-116. · Zbl 0742.92008
[35] J. Keener and J. Sneed, Mathematical Physiology, Springer, New York, 1998. · Zbl 0913.92009
[36] M. Krupa, B. Sandstede, and P. Szmolyan, Fast and slow waves in the FitzHugh-Nagumo equation, J. Differential Equations, 133 (1997), pp. 49-97. · Zbl 0898.34050
[37] R. S. Lillie, Factors affecting transmission and recovery in the passive iron nerve model, J. General Physiology, 7 (1925), pp. 473-507.
[38] J. Mallet-Paret, Spatial patterns, spatial chaos and traveling waves in lattice differential equations, in Stochastic and Spatial Structures of Dynamical Systems, Royal Netherlands Academy of Sciences, Amsterdam, 1996, pp. 105-129. · Zbl 0980.37031
[39] J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dynam. Differential Equations, 11 (1999), pp. 1-48. · Zbl 0927.34049
[40] D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: 1. Traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), pp. 206-225. · Zbl 1001.92021
[41] L. A. Ranvier, Lećons sur l’Histologie du Système Nerveux, par M. L. Ranvier, recueillies par M. Ed. Weber, F. Savy, Paris, 1878.
[42] W. M. Schouten-Straatman and H. J. Hupkes, Travelling Pulse Solutions for Completely Discrete FitzHugh-Nagumo Type Equations with Infinite-Range Interactions, in preparation. · Zbl 1418.34141
[43] W. M. Schouten-Straatman and H. J. Hupkes, Nonlinear Stability of Pulse Solutions for the Discrete Fitzhugh-Nagumo Equation with Infinite-Range Interactions, http://pub.math.leidenuniv.nl/ hupkeshj/fhninfr.pdf, 2017. · Zbl 1418.34141
[44] W. M. Schouten-Straatman and H. J. Hupkes, Nonlinear stability of pulse solutions for the discrete Fitzhugh-Nagumo equation with infinite-range interactions, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), pp. 5017-5083. · Zbl 1418.34141
[45] J. Sneyd, Tutorials in Mathematical Biosciences II, Mathematical Modeling of Calcium Dynamics and Signal Transduction, Lecture Notes in Math. 187, Springer, New York, 2005. · Zbl 1078.92500
[46] A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films, Springer, New York, 2010.
[47] A. Vainchtein and E. S. Van Vleck, Nucleation and propagation of phase mixtures in a bistable chain, Phys. Rev. B, 79 (2009), 144123.
[48] A. Vainchtein, E. S. Van Vleck, and A. Zhang, Propagation of periodic patterns in a discrete system with competing interactions, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 523-555. · Zbl 1387.34108
[49] K. Xu, G. Zhong, and X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons, Science, 339 (2013), pp. 452-456.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.