×

Metric for attractor overlap. (English) Zbl 1419.76278

Summary: We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e. ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by a few representative centroids. We employ MAO for two quite different actuated flow configurations: a two-dimensional wake with vortices in a narrow frequency range and three-dimensional wall turbulence with a broadband spectrum. In the first application, seven control laws are applied to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders whose centres form an equilateral triangle pointing in the upstream direction. These seven operating conditions comprise unforced shedding, boat tailing, base bleed, high- and low-frequency forcing as well as two opposing Magnus effects. In the second example, MAO is applied to three-dimensional simulation data from an open-loop drag reduction study of a turbulent boundary layer. The actuation mechanisms of 38 spanwise travelling transversal surface waves are investigated. MAO compares and classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis of simulations representing a myriad of different operating conditions.

MSC:

76F20 Dynamical systems approach to turbulence
76F65 Direct numerical and large eddy simulation of turbulence
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76D25 Wakes and jets
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alkishriwi, N., Meinke, M. & Schröder, W.2006A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. Fluids35 (10), 1126-1136. · Zbl 1177.76153
[2] Arthur, D. & Vassilvitskii, S.2007k-means + +: the advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027-1035. Society for Industrial and Applied Mathematics. · Zbl 1302.68273
[3] Bansal, M. S. & Yarusevych, S.2017Experimental study of flow through a cluster of three equally spaced cylinders. Exp. Therm. Fluid Sci.80, 203-217.
[4] Barros, D., Borée, J., Noack, B. R., Spohn, A. & Ruiz, T.2016Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech.805, 442-459.
[5] Bearman, P. W.1967The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aeronaut. Q.18 (03), 207-224.
[6] Berkooz, G., Holmes, P. & Lumley, J. L.1993The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech.25, 539-575.
[7] Boris, J. P., Grinstein, F. F., Oran, E. S. & Kolbe, R. L.1992New insights into large eddy simulation. Fluid Dyn. Res.10 (4-6), 199-228.
[8] Brunton, S. L. & Noack, B. R.2015Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev.67 (5), 050801.
[9] Burkardt, J., Gunzburger, M. & Lee, H. C.2006POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Meth. Appl. Mech. Engng196, 337-355. · Zbl 1120.76323
[10] Cox, T. F. & Cox, M. A. A.2000Multidimensional Scaling, 2nd edn. (Monographs on Statistics and Applied Probability), vol. 88. Chapman and Hall. · Zbl 1004.91067
[11] Du, Y., Symeonidis, V. & Karniadakis, G. E.2002Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech.457, 1-34. · Zbl 1112.76373
[12] Duriez, T., Brunton, S. L. & Noack, B. R.2016Machine Learning Control - Taming Nonlinear Dynamics and Turbulence, (Fluid Mechanics and Its Applications), vol. 116. Springer. · Zbl 1349.76001
[13] Endres, D. M. & Schindelin, J. E.2003A new metric for probability distributions. IEEE Trans. Inf. Theory49, 1858-1860. · Zbl 1294.62003
[14] García-Mayoral, R. & Jiménez, J.2011Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech.678, 317-347. · Zbl 1241.76175
[15] Geropp, D.1995 Process and device for reducing the drag in the rear region of a vehicle, for example, a road or rail vehicle or the like. United States Patent US 5407245 A.
[16] Geropp, D. & Odenthal, H.-J.2000Drag reduction of motor vehicles by active flow control using the Coanda effect. Exp. Fluids28 (1), 74-85.
[17] Haller, G.2005An objective definition of a vortex. J. Fluid Mech.525, 1-26. · Zbl 1065.76031
[18] Hirt, C. W., Amsden, A. A. & Cook, J. L.1997An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys.135 (2), 203-216. · Zbl 0938.76068
[19] Hu, J. & Zhou, Y.2008aFlow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification. J. Fluid Mech.607, 51-80. · Zbl 1145.76304
[20] Hu, J. & Zhou, Y.2008bFlow structure behind two staggered circular cylinders. Part 2. Heat and momentum transport. J. Fluid Mech.607, 81-107. · Zbl 1145.76305
[21] Itoh, M., Tamano, S., Yokota, K. & Taniguchi, S.2006Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul.7, N27.
[22] Jeong, J. & Hussain, F.1995On the identification of a vortex. J. Fluid Mech.285, 69-94. · Zbl 0847.76007
[23] Jung, W. J., Mangiavacchi, N. & Akhavan, R.1992Suppression of turbulence in wallbounded flows by highfrequency spanwise oscillations. Phys. Fluids A4 (8), 1605-1607.
[24] Kaiser, E., Li, R. & Noack, B. R.2017aOn the control landscape topology. In The 20th World Congress of the International Federation of Automatic Control (IFAC), pp. 1-4.
[25] Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M. W., Daviller, G., Östh, J., Krajnović, S. & Niven, R. K.2014Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech.754, 365-414. · Zbl 1329.76177
[26] Kaiser, E., Noack, B. R., Spohn, A., Cattafesta, L. N. & Morzyński, M.2017bCluster-based control of nonlinear dynamics. Theor. Comput. Fluid Dyn.31 (5-6), 1579-1593.
[27] Kasten, J., Reininghaus, J., Hotz, I., Hege, H.-C., Noack, B. R., Daviller, G., Comte, P. & Morzyński, M.2016Acceleration feature points of unsteady shear flows. Arch. Mech.68, 55-80. · Zbl 1338.76025
[28] Klumpp, S., Meinke, M. & Schröder, W.2010aNumerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust.85 (1), 57-71. · Zbl 1425.76105
[29] Klumpp, S., Meinke, M. & Schröder, W.2010bDrag reduction by spanwise transversal surface waves. J. Turbul.11, N22. · Zbl 1432.76111
[30] Klumpp, S., Meinke, M. & Schröder, W.2011Friction drag variation via spanwise transversal surface waves. Flow Turbul. Combust.87 (1), 33-53. · Zbl 1432.76111
[31] Koh, S. R., Meysonnat, P., Statnikov, V., Meinke, M. & Schröder, W.2015aDependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids119, 261-275. · Zbl 1390.76180
[32] Koh, S. R., Meysonnat, P., Meinke, M. & Schröder, W.2015bDrag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turbul. Combust.95 (1), 169-190.
[33] Kullback, S.1959Information Theory and Statistics, 1st edn. John Wiley. · Zbl 0149.37901
[34] Kullback, S. & Leibler, R. A.1951On information and sufficiency. Ann. Math. Statist.22, 79-86. · Zbl 0042.38403
[35] Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M. & Schröder, W.2015Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. (B/Fluids)53, 101-112.
[36] Liepmann, H. W. & Roshko, A.2013Elements of Gasdynamics. Dover. · Zbl 0078.39901
[37] Liou, M.-S. & Steffen, C. J.1993A new flux splitting scheme. J. Comput. Phys.107, 23-39. · Zbl 0779.76056
[38] Lloyd, S.1982Least squares quantization in PCM. IEEE Trans. Inf. Theory28 (2), 129-137. · Zbl 0504.94015
[39] Loiseau, J.-C., Noack, B. R. & Brunton, S. L.2018Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J. Fluid Mech.844, 459-490. · Zbl 1461.76369
[40] Lugt, H. J.1996Introduction to Vortex Theory. Vortex Flow Press.
[41] MacQueen, J.1967Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Math. Stat. and Prob., vol. 1, pp. 281-297. · Zbl 0214.46201
[42] Meinke, M., Schröder, W., Krause, E. & Rister, T.2002aA comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids31 (4-7), 695-718. · Zbl 1027.76025
[43] Meinke, M., Schröder, W., Krause, E. & Rister, T.2002bA comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids31 (4), 695-718. · Zbl 1027.76025
[44] Meysonnat, P. S., Roggenkamp, D., Li, W., Roidl, B. & Schröder, W.2016Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. (B/Fluids)55, 313-323. · Zbl 1408.76291
[45] Noack, B. R.2016From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech.802, 1-4. · Zbl 1462.76094
[46] Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F.2003A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech.497, 335-363. · Zbl 1067.76033
[47] Noack, B. R. & Morzyński, M.2017 The fluidic pinball – a toolkit for multiple-input multiple-output flow control (version 1.0). Tech. Rep. 02/2017. Chair of Virtual Engineering, Poznan University of Technology, Poland.
[48] Noack, B. R., Stankiewicz, W., Morzyński, M. & Schmid, P. J.2016Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech.809, 843-872. · Zbl 1383.76122
[49] Oxlade, A. R., Morrison, J. F., Qubain, A. & Rigas, G.2015High-frequency forcing of a turbulent axisymmetric wake. J. Fluid Mech.770, 305-318.
[50] Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G.2008Feedback shear layer control for bluff body drag reduction. J. Fluid Mech.608, 161-196. · Zbl 1145.76306
[51] Quadrio, M.2011Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A369 (1940), 1428-1442.
[52] Raibaudo, C., Zhong, P., Martinuzzi, R. J. & Noack, B. R.2017Closed-loop control of a triangular bluff body using rotating cylinders. In The 20th World Congress of the International Federation of Automatic Control (IFAC), pp. 1-6.
[53] Renze, P., Schröder, W. & Meinke, M.2008Large-eddy simulation of film cooling flows at density gradients. Intl J. Heat Fluid Flow29 (1), 18-34. · Zbl 1222.76061
[54] Roidl, B., Meinke, M. & Schröder, W.2013A reformulated synthetic turbulence generation method for a zonal RANS-LES method and its application to zero-pressure gradient boundary layers. Intl J. Heat Fluid Flow44, 28-40.
[55] Rolland, R.2017 Fluidic pinball – a control study. MS2 Internship Report, LIMSI and ENSAM, Paris, France.
[56] Roussopoulos, K.1993Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech.248, 267-296.
[57] Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S.2009Spectral analysis of nonlinear flows. J. Fluid Mech.645, 115-127. · Zbl 1183.76833
[58] Rütten, F., Schröder, W. & Meinke, M.2005Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids17 (3), 035107. · Zbl 1187.76454
[59] Schmid, P. J.2010Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[60] Schuster, H. G.1988Deterministic Chaos, 2nd edn. VCH Verlagsgesellschaft mbH. · Zbl 0707.58003
[61] Statnikov, V., Meinke, M. & Schröder, W.2017Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech.815, 1-25. · Zbl 1383.76401
[62] Steinhaus, H.1956Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci.4 (12), 801-804. · Zbl 0079.16403
[63] Shinji, T. & Motoyuki, I.2012Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul.13, N9.
[64] Theofilis, V.2011Global linear instability. Annu. Rev. Fluid Mech.43, 319-352. · Zbl 1299.76074
[65] Thiria, B., Goujon-Durand, S. & Wesfreid, J. E.2006The wake of a cylinder performing rotary oscillations. J. Fluid Mech.560, 123-147. · Zbl 1122.76003
[66] Venturi, D.2006On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate. J. Fluid Mech.559, 215-254. · Zbl 1095.76048
[67] Wood, C. J.1964The effect of base bleed on a periodic wake. J. R. Aero. Soc.68 (643), 477-482.
[68] Zhao, H., Wu, J.-Z. & Luo, J.-S.2004Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res.34 (3), 175-198. · Zbl 1060.76563
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.