×

Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis: analysis of a spatially nonlocal model. (English) Zbl 1406.92497

Summary: Lyme disease is transmitted via black-legged ticks, the spatial spread of which is believed to be primarily via transport on white-tailed deer. In this paper, we develop a mathematical model to describe the spatial spread of black-legged ticks due to deer dispersal. The model turns out to be a system of differential equations with a spatially non-local term accounting for the phenomenon that a questing female adult tick that attaches to a deer at one location may later drop to the ground, fully fed, at another location having been transported by the deer. We first justify the well-posedness of the model and analyze the stability of its steady states. We then explore the existence of traveling wave fronts connecting the extinction equilibrium with the positive equilibrium for the system. We derive an algebraic equation that determines a critical value \(c^*\) which is at least a lower bound for the wave speed in the sense that, if \(c < c^*\), there is no traveling wave front of speed \(c\) connecting the extinction steady state to the positive steady state. Numerical simulations of the wave equations suggest that \(c^*\) is the minimum wave speed. We also carry out some numerical simulations for the original spatial model system and the results seem to confirm that the actual spread rate of the tick population coincides with \(c^*\). We also explore the dependence of \(c^*\) on the dispersion rate of the white tailed deer, by which one may evaluate the role of the deer’s dispersion in the geographical spread of the ticks.

MSC:

92D25 Population dynamics (general)
35C07 Traveling wave solutions
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. M. Bacon; K. J. Kugeler; K. S. Griffith; P. S. Mead, Lyme disease -United States, 2003-2005, Journal of the American Medical Association, 298, 278-279 (2007)
[2] A. G. Barbour; D. Fish, The biological and social phenomenon of Lyme disease, Science, 260, 1610-1616 (1993) · doi:10.1126/science.8503006
[3] R. J. Brinkerhoff; C. M. Folsom-O’Keefe; K. Tsao; M. A. Diuk-Wasser, Do birds affect Lyme disease risk? Range expansion of the vector-borne pathogen Borrelia burgdorferi, Front. Ecol. Environ, 9, 103-110 (2011) · doi:10.1890/090062
[4] S. G. Caraco; S. Glavanakov; G. Chen; J. E. Flaherty; T. K. Ohsumi; B. K. Szymanski, Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease, Am. Nat., 160, 348-359 (2002)
[5] M. R. Cortinas; U. Kitron, County-level surveillance of white-tailed deer infestation by Ixodes scapularis and Dermacentor albipictus (Acari: Ixodidae) along the Illinois River, J. Med. Entomol., 43, 810-819 (2006)
[6] D. T. Dennis; T. S. Nekomoto; J. C. Victor; W. S. Paul; J. Piesman, Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States, J. Med. Entomol., 35, 629-638 (1998) · doi:10.1093/jmedent/35.5.629
[7] G. Fan; H. R. Thieme; H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71, 1017-1048 (2015) · Zbl 1355.92087 · doi:10.1007/s00285-014-0845-0
[8] S. A. Gourley; S. Ruan, A delay equation model for oviposition habitat selection by mosquitoes, J. Math. Biol., 65, 1125-1148 (2012) · Zbl 1253.35187 · doi:10.1007/s00285-011-0491-8
[9] B. H. Hahn; C. S. Jarnevich; A. J. Monaghan; R. J. Eisen, Modeling the Geographic Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States, Journal of Medical Entomology, 53, 1176-1191 (2016)
[10] S. Hamer; G. Hickling; E. Walker; J. I. Tsao, Invasion of the Lyme disease vector Ixodes scapularis: Implications for Borrelia burgdorferi endemicity, EcoHealth, 7, 47-63 (2010) · doi:10.1007/s10393-010-0287-0
[11] X. Lai and X. Zou, Spreading speed and minimal traveling wave speed in a spatially nonlocal model for the population of blacklegged tick Ixodes scapularis, in preparation.
[12] J. Li; X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71, 2048-2079 (2009) · Zbl 1180.92080 · doi:10.1007/s11538-009-9457-z
[13] D. Liang; J. W.-H. So; F. Zhang; X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numeric computations, Diff. Eqns. Dynam. Syst., 11, 117-139 (2003) · Zbl 1231.35287
[14] K. Liu; Y. Lou; J. Wu, Analysis of an age structured model for tick populations subject to seasonal effects, J. Diff. Eqns., 263, 2078-2112 (2017) · Zbl 1369.35099 · doi:10.1016/j.jde.2017.03.038
[15] N. K. Madhav; J. S. Brownstein; J. I. Tsao; D. Fish, A dispersal model for the range expansion of blacklegged tick (Acari: Ixodidae), J. Med. Entomol., 41, 842-852 (2004) · doi:10.1603/0022-2585-41.5.842
[16] M. G. Neubert; I. M. Parker, Projecting rates of spread for invasive species, Risk Analysis, 24, 817-831 (2004) · doi:10.1111/j.0272-4332.2004.00481.x
[17] N. H. Ogden; M. Bigras-Poulin; C. J. O’Callaghan; I. K. Barker; L. R. Lindsay; A. Maarouf; K. E. Smoyer-Tomic; D. Waltner-Toews; D. Charron, A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis, Int J. Parasitol., 35, 375-389 (2005) · doi:10.1016/j.ijpara.2004.12.013
[18] N. H. Ogden; L. R. Lindsay; K. Hanincova; I. K. Barker; M. Bigras-Poulin; D. F. Charron; A. Heagy; C. M. Francis; C. J. O’Callaghan; I. Schwartz; R. A. Thompson, Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada, Applied and Environmental Microbiology, 74, 1780-1790 (2008)
[19] J. W.-H. So; J. Wu; X. Zou, A reaction diffusion model for a single species with age structure —I. Traveling wave fronts on unbounded domains, Proc. Royal Soc. London. A, 457, 1841-1853 (2001) · Zbl 0999.92029 · doi:10.1098/rspa.2001.0789
[20] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70, 188-211 (2009) · Zbl 1191.47089 · doi:10.1137/080732870
[21] J. Van Buskirk; R. S. Ostfeld, Controlling Lyme disease by modifying the density and species composition of tick hosts, Ecological Applications, 5, 1133-1140 (1995) · doi:10.2307/2269360
[22] H. F. Weinberger; M. A. Lewis; B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45, 183-218 (2002) · Zbl 1023.92040 · doi:10.1007/s002850200145
[23] X. Wu; G. Röst; X. Zou, Impact of spring bird migration on the range expansion of Ixodes scapularis tick population, Bull. Math. Biol., 78, 138-168 (2016) · Zbl 1356.92076 · doi:10.1007/s11538-015-0133-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.