×

Ridge-based method for finding curvilinear structures from noisy data. (English) Zbl 1507.62147

Summary: Extraction of curvilinear structures from noisy data is an essential task in many application fields such as data analysis, pattern recognition and machine vision. The proposed approach assumes a random process in which the samples are obtained from a generative model. The model specifies a set of generating functions describing curvilinear structures as well as sampling noise and background clutter. It is shown that ridge curves of the marginal density induced by the model can be used to estimate the generating functions. Given a Gaussian kernel density estimate for the marginal density, ridge curves of the density estimate are parametrized as the solution to a differential equation. Finally, a predictor-corrector algorithm for tracing the ridge curve set of such a density estimate is developed. Efficiency and robustness of the algorithm are demonstrated by numerical experiments on synthetic datasets as well as observational datasets from seismology and cosmology.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G07 Density estimation
62H25 Factor analysis and principal components; correspondence analysis
62P35 Applications of statistics to physics

Software:

KernSmooth; pyuvdata
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banfield, J. D.; Raftery, A. E., Ice floe identification in satellite images using mathematical morphology and clustering about principal curves, J. Amer. Statist. Assoc., 87, 417, 7-16, (1992)
[2] Baş, E., Extracting structural information on manifolds from high dimensional data and connectivity analysis of curvilinear structures in 3D biomedical images, (2011), Northeastern University Boston, MA, (Ph.D. thesis)
[3] Baş, E.; Erdogmus, D., Principal curves as skeletons of tubular objects, Neuroinformatics, 9, 2-3, 181-191, (2011)
[4] Baş, E.; Erdogmus, D.; Draft, R. W.; Lichtman, J. W., Local tracing of curvilinear structures in volumetric color images: application to the brainbow analysis, J. Vis. Commun. Image Represent., 23, 8, 1260-1271, (2012)
[5] Bofill, J. M.; Quapp, W.; Caballero, M., The variational structure of gradient extremals, J. Chem. Theory Comput., 8, 3, 927-935, (2012)
[6] Bondensgård, K.; Jensen, F., Gradient extremal bifurcation and turning points: an application to the H_{2}CO potential energy surface, J. Chem. Phys., 104, 20, 8025-8031, (1996)
[7] Brunsdon, C., Path estimation from GPS tracks, (9th International Conference on Geocomputation, (2007), National Centre for Geocomputation, National University of Ireland Maynooth, Eire)
[8] Chacón, J. E.; Duong, T., Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices, TEST, 19, 2, 375-398, (2010) · Zbl 1203.62054
[9] Chacón, J. E.; Duong, T.; Wand, M. P., Asymptotics for general multivariate kernel density derivative estimators, Statist. Sinica, 21, 807-840, (2011) · Zbl 1214.62039
[10] Chen, D.; Zhang, J.; Tang, S.; Wang, J., Freeway traffic stream modeling based on principal curves and its analysis, IEEE Trans. Intell. Transp. Syst., 5, 4, (2004)
[11] Cheng, Y., Mean shift, mode seeking, and clustering, IEEE Trans. Pattern Anal. Mach. Intell., 17, 8, 790-799, (1995)
[12] Comaniciu, D.; Meer, P., Mean shift: a robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell., 24, 5, 603-619, (2002)
[13] Damon, J., Generic structure of two-dimensional images under Gaussian blurring, SIAM J. Appl. Math., 59, 1, 97-138, (1998) · Zbl 0914.68206
[14] Dasgupta, A.; Raftery, A. E., Detecting features in spatial point processes with clutter via model-based clustering, J. Amer. Statist. Assoc., 93, 441, 294-302, (1998) · Zbl 0906.62105
[15] Delicado, P., Another look at principal curves and surfaces, J. Multivariate Anal., 77, 1, 84-116, (2001) · Zbl 1033.62048
[16] Delicado, P.; Huerta, M., Principal curves of oriented points: theoretical and computational improvements, Comput. Statist., 18, 2, 293-315, (2003) · Zbl 1050.62064
[17] Dong, D.; McAvoy, T. J., Nonlinear principal component analysis—based on principal curves and neural networks, Comput. Chem. Eng., 20, 1, 65-78, (1996)
[18] Drinkwater, M. J.; Parker, Q. A.; Proust, D.; Slezak, E.; Quintana, H., The large scale distribution of galaxies in the Shapley supercluster, Publ. Astron. Soc. Aust., 21, 1, 89-96, (2004)
[19] Duong, T., Ks: kernel density estimation and kernel discriminant analysis for multivariate data in \(R\), J. Stat. Softw., 21, 7, 1-16, (2007)
[20] Duong, T.; Hazelton, M. L., Cross-validation bandwidth matrices for multivariate kernel density estimation, Scand. J. Statist., 32, 3, 485-506, (2005) · Zbl 1089.62035
[21] Eberly, D., Ridges in image and data analysis, (1996), Kluwer Academic Publishers Dordrecht, Netherlands · Zbl 0917.68218
[22] Einbeck, J.; Dwyer, J., Using principal curves to analyse traffic patterns on freeways, Transportmetrica, 7, 3, 229-246, (2011)
[23] Einbeck, J.; Tutz, G.; Evers, L., Local principal curves, Stat. Comput., 15, 4, 301-313, (2005)
[24] Flasque, N.; Desvignes, M.; Constans, J.-M.; Revenu, M., Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images, Med. Image Anal., 5, 3, 173-183, (2001)
[25] Genovese, C. R.; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L., On the path density of a gradient field, Ann. Statist., 37, 6A, 3236-3271, (2009) · Zbl 1191.62062
[26] Genovese, C. R.; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L., The geometry of nonparametric filament estimation, J. Amer. Statist. Assoc., 107, 498, 788-799, (2012) · Zbl 1261.62030
[27] Greengard, L.; Strain, J., The fast Gauss transform, SIAM J. Sci. Stat. Comput., 12, 1, 79-94, (1991) · Zbl 0721.65089
[28] Hastie, T., Principal curves and surfaces, (1984), Stanford University, (Ph.D. thesis)
[29] Hastie, T.; Stuetzle, W., Principal curves, J. Amer. Statist. Assoc., 84, 406, 502-516, (1989) · Zbl 0679.62048
[30] Hoffman, D. K.; Nord, R. S.; Ruedenberg, K., Gradient extremals, Theoret. Chim. Acta, 69, 4, 265-279, (1986)
[31] Hoover, A.; Kouznetsova, V.; Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Trans. Med. Imaging, 19, 3, 203-210, (2000)
[32] Jang, W., Nonparametric density estimation and clustering in astronomical sky surveys, Comput. Statist. Data Anal., 50, 3, 760-774, (2006) · Zbl 1432.62377
[33] Kégl, B.; Krzyzak, A., Piecewise linear skeletonization using principal curves, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1, 59-74, (2002)
[34] Kégl, B.; Krzyzak, A.; Linder, T.; Zeger, K., Learning and design of principal curves, IEEE Trans. Pattern Anal. Mach. Intell., 22, 3, 281-297, (2000)
[35] Martínez, Z.; Ludeña, C., An algorithm for automatic curve detection, Comput. Statist. Data Anal., 55, 6, 2158-2171, (2011) · Zbl 1328.62396
[36] Miller, J., Relative critical sets in \(R^n\) and applications to image analysis, (1998), University of North Carolina, (Ph.D. thesis)
[37] Novikov, D.; Colombi, S.; Doré, O., Skeleton as a probe of the cosmic web: the two-dimensional case, Mon. Not. R. Astron. Soc., 366, 4, 1201-1216, (2006)
[38] Ozertem, U.; Erdogmus, D., Locally defined principal curves and surfaces, J. Mach. Learn. Res., 12, 1249-1286, (2011) · Zbl 1280.62071
[39] Pulkkinen, S., A ridge curve approach to extraction of curvilinear structures from noisy data. TUCS technical report TR1082, (2013), Turku Centre for Computer Science (http://tucs.fi), Turku, Finland
[40] Pulkkinen, S.; Mäkelä, M. M.; Karmitsa, N., A continuation approach to mode-finding of multivariate Gaussian mixtures and kernel density estimates, J. Global Optim., 56, 2, 459-487, (2013) · Zbl 1339.60012
[41] Pulkkinen, S.; Mäkelä, M. M.; Karmitsa, N., A generative model and a generalized trust region Newton method for noise reduction, Comput. Optim. Appl., 57, 1, 129-165, (2014) · Zbl 1306.62134
[42] Scott, D. W., Multivariate density estimation: theory practice and visualization, (1992), John Wiley and Sons New York · Zbl 0850.62006
[43] Shih, F. Y.; Kowalski, A. J., Automatic extraction of filaments in \(h \alpha\) solar images, Sol. Phys., 218, 1-2, 99-122, (2003)
[44] Sousbie, T.; Pichon, C.; Colombi, S.; Novikov, D.; Pogosyan, D., The 3D skeleton: tracing the filamentary structure of the universe, Mon. Not. R. Astron. Soc., 383, 4, 1655-1670, (2008)
[45] Stanford, D. C.; Raftery, A. E., Finding curvilinear features in spatial point patterns: principal curve clustering with noise, IEEE Trans. Pattern Anal. Mach. Intell., 22, 6, 601-609, (2000)
[46] Su, J.; Srivastava, A.; Huffer, F. W., Detection, classification and estimation of individual shapes in 2D and 3D point clouds, Comput. Statist. Data Anal., 58, 227-241, (2013) · Zbl 1365.62259
[47] Tibshirani, R., Principal curves revisited, Stat. Comput., 2, 4, 183-190, (1992)
[48] Wand, M. P.; Jones, M. C., Kernel smoothing, (1995), Chapman and Hall London · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.