×

Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model. (English) Zbl 1395.93258

Summary: A hybrid model, which adopts a radial basis function (RBF) neural networks with functional weights (FWRBF) to approximate the coefficients of the state-dependent AutoRegressive model with eXogenous input variables (SD-ARX), is built for modeling a magnetic levitation ball system and is referred to as the functional weight RBF nets-based ARX (FWRBF-ARX) model. This model structure, which may be identified by using the historical input/output data, inherits both the advantages of the FWRBF networks in function approximation and of the state-dependent ARX models in description of nonlinear dynamics. Due to the structured characteristics of the FWRBF-ARX model, an offline structured nonlinear parameter optimization method (SNPOM) is applied to identify the model structure and parameters. Using the input and output observation data of the real system, a FWRBF-ARX model with small residual, small standard variation and small long-term predictive residual can be identified. Based on the local linearity of the built FWRBF-ARX model at certain working point, a locally linearized model predictive controller (MPC) is designed to achieve stable levitating and output-tracking control of the steel ball in the electromagnetic field. From the real-time control results, it is seen that the FWRBF-ARX model-based MPC may control the steel ball to track step signals very well, and may obtain much better control performance within wide step range compared to conventional PID control, the ARX model and RBF-ARX model-based MPCs.

MSC:

93C10 Nonlinear systems in control theory
68T05 Learning and adaptive systems in artificial intelligence
93B18 Linearizations
93B51 Design techniques (robust design, computer-aided design, etc.)
93B15 Realizations from input-output data
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baechle, T.; Hentzelt, S.; Graichen, K., Nonlinear model predictive control of a magnetic levitation system, Control Eng. Pract., 21, 9, 1250-1258, (2013)
[2] Rote, D. M.; Cai, Y. G., Review of dynamic stability of repulsive-force maglev suspension systems, IEEE Trans. Magn., 38, 2, 1383-1390, (2002)
[3] Torres, L. H.S.; Schnitman, L.; Junior, C. A.V. V.; Felippe de Souza, J. A.M., Feedback linearization and model reference adaptive control of a magnetic levitation system, Stud. Inform. Control, 21, 1, 67-74, (2012)
[4] Morales, R.; Sira-Ramirez, H., Trajectory tracking for the magnetic ball levitation system via exact feedforward linearisation and GPI control, Int. J. Control, 83, 6, 1155-1166, (2010) · Zbl 1222.93049
[5] Luat, T.; Cho, J.-H.; Kim., Y.-T., Fuzzy-tuning PID controller for nonlinear electromagnetic levitation system, (Kim, S; Jung, J-W; Kubota, N, Soft Computing in Intelligent Control: Advances in Intelligent Systems and Computing, 272, (2014), Springer International Publishing Switzerland), 17-28
[6] Morales, R.; Feliu, V.; Sira-Ramirez, H., Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain, IEEE Trans. Control Syst. Technol., 19, 4, 757-771, (2011)
[7] Yang, Z.-J.; Kunitoshi, K.; Kanae, S.; Wada, K., Adaptive robust output-feedback control of a magnetic levitation system by k-filter approach, IEEE Trans. Ind. Electron., 55, 1, 390-399, (2008)
[8] Shieh, H.-J.; Siao, J.-H.; Liu, Y.-C., A robust optimal sliding-mode control approach for magnetic levitation systems, Asian J. Control, 12, 4, 480-487, (2010)
[9] Dragos, C. A.; Precup, R. E.; Tomescu, M. L.; Preitl, S.; Petriu, E. M.; Radac, M. B., An approach to fuzzy modeling of electromagnetic actuated clutch systems, Int. J. Comput. Commun. Control, 8, 3, 395-406, (2013)
[10] K. Ishaque, Y. Saleem, S.S. Abdullah, M. Amjad, M. Rashid, S. Kazi, Modeling and control of magnetic levitation system via fuzzy logic controller, in: Proceedings of the 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011, April 19, 2011-April 21, 2011, Kuala Lumpur, Malaysia, 2011.
[11] Chen, S.; Lin, F.; Shyu, K., Direct decentralized neural control for nonlinear MIMO magnetic levitation system, Neurocomputing, 72, 13-15, 3220-3230, (2009)
[12] Ulbig, A.; Olaru, S.; Dumur, D.; Boucher, P., Explicit nonlinear predictive control for a magnetic levitation system, Asian J. Control, 12, 3, 434-442, (2010)
[13] B. Wang, G.-P. Liu, D. Rees, Networked predictive control of magnetic levitation system, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio,Texas, USA, 2009, pp. 4100-4105.
[14] Kemih, K.; Tekkouk, O.; Filali, S., Constrained generalised predictive control with estimation by genetic algorithm for a magnetic levitation system, Int. J. Innov. Comput. Inf. Control, 2, 3, 543-552, (2006)
[15] Peterson, K. S.; Grizzle, J. W.; Stefanopoulou, A. G., Nonlinear control for magnetic levitation of automotive engine vales, IEEE Trans. Control Syst. Technol., 14, 2, 346-354, (2006)
[16] Glueck, T.; Kemmetmueller, W.; Tump, C.; Kugi, A., A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification, Control Eng. Pract., 19, 2, 146-157, (2011)
[17] Gao, H.; Zhang, T.; Xia, X., Adaptive neural control of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays, J. Frankl. Inst.-Eng. Appl. Math., 351, 6, 3182-3199, (2014) · Zbl 1290.93161
[18] N.-V. Truong, L. Wang, J. Huang, Nonlinear modeling of a magnetic bearing system using SDP model and linear wavelet parameterization, in: Proceedings of the American Control Conference, New York, NY, 2007, pp. 2906-2911.
[19] Qin, Y.; Peng, H.; Ruan, W.; Wu, J.; Gao, J., A modeling and control approach to magnetic levitation system based on state-dependent ARX model, J. Process Control, 24, 1, 93-112, (2014)
[20] Rojas, I.; Pomares, H.; Bernier, J. L.; Ortega, J.; Pino, B.; Pelayo, F. J., Time series analysis using normalized PG-RBF network with regression weights, Neurocomputing, 42, 267-285, (2002) · Zbl 1002.68708
[21] Gan, M.; Peng, H.; Peng, X.; Chen, X.; Inoussa, G., A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling, Inf. Sci., 180, 22, 4370-4383, (2010)
[22] Huang, L., Future development in control science: why, what and strategy, Acta Autom. Sin., 39, 2, 97-100, (2013)
[23] Tsungnan, L.; Horne, B. G.; Tino, P.; Giles, C. L., Learning long-term dependencies in NARX recurrent neural networks, IEEE Trans. Neural Netw., 7, 6, 1329-1338, (1996)
[24] Peng, H.; Ozaki, T.; Toyoda, Y.; Shioya, H.; Nakano, K.; Haggan-Ozaki, V., RBF-ARX model-based nonlinear system modeling and predictive control with application to a nox decomposition process, Control Eng. Pract., 12, 2, 191-203, (2004)
[25] Sriniwas, G. R.; Arkun, Y., A global solution to the nonlinear model predictive control algorithms using polynomial ARX models, Comput. Chem. Eng., 21, 4, 431-439, (1997)
[26] Golob, M.; Tovornik, B., Input-output modelling with decomposed neuro-fuzzy ARX model, Neurocomputing, 71, 4-6, 875-884, (2008)
[27] Peng, H.; Nakano, H.; Shioya, H., Nonlinear predictive control using neural nets-based local linearization ARX model-stability and industrial application, IEEE Trans. Control Syst. Technol., 15, 1, 130-143, (2007)
[28] Chen, Y.; Yang, B.; Dong, J. W., Time-series prediction using a local linear wavelet neural network, Neurocomputing, 69, 4-6, 449-465, (2006)
[29] Peng, H.; Ozaki, T.; Haggan-Ozaki, V.; Toyoda, Y., A parameter optimization method for radial basis function type models, IEEE Trans. Neural Netw., 14, 2, 432-438, (2003)
[30] Peng, H.; Gao, J., Multi-model switching control method of magnetic levitation system, Control Eng. China, 18, 02, 206-209, (2011)
[31] Goldfarb, D.; Idnani, A., A numerically stable dual method for solving strictly convex quadratic programs, Math. Program., 27, 1, 1-33, (1983) · Zbl 0537.90081
[32] T. Zou, H. Li, X. Zhang, D. Zhao, Complexity simulation of DMC based on quadratic programming, in: Proceedings of the 30th Chinese Control Conference, Yantai, China, 2011, pp. 3335-3339.
[33] Wei, F.; Zou, T.; Yu, H.; Lin, Y., Computational complexity analysis of two-layered predictive control, J. East China Univ. Sci. Technol.(Nat. Sci. Ed.), 39, 1, 102-107, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.