×

Slow rotation of a spherical particle inside an elastic tube. (English) Zbl 1470.76104

Summary: In this paper, we present an analytical calculation of the rotational mobility functions of a particle rotating on the centerline of an elastic cylindrical tube whose membrane exhibits resistance toward shearing and bending. We find that the correction to the particle rotational mobility about the cylinder axis depends solely on membrane shearing properties, while both shearing and bending manifest themselves for the rotational mobility about an axis perpendicular to the cylinder axis. In the quasi-steady limit of vanishing frequency, the particle rotational mobility nearby a no-slip rigid cylinder is recovered only if the membrane possesses a non-vanishing resistance toward shearing. We further show that for the asymmetric rotation along the cylinder radial axis a coupling between shearing and bending exists. Our analytical predictions are compared and validated with corresponding boundary integral simulations where a very good agreement is obtained.

MSC:

76T20 Suspensions
76U05 General theory of rotating fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74K15 Membranes

Software:

Cuba
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Sharp, K., Fine, R., Schulten, K., Honig, B.: Brownian dynamics simulation of diffusion to irregular bodies. J. Phys. Chem 91, 3624-3631 (1987) · doi:10.1021/j100297a032
[2] Hernandez-Ortiz, J.P., Stoltz, C.G., Graham, M.D.: Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95(20), 204501 (2005) · doi:10.1103/PhysRevLett.95.204501
[3] Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer, Berlin (2012) · Zbl 0612.76032
[4] Cichocki, B., Felderhof, B.U.: Short-time diffusion coefficients and high frequency viscosity of dilute suspensions of spherical Brownian particles. J. Chem. Phys. 89(2), 1049-1054 (1988) · doi:10.1063/1.455256
[5] Cichocki, B., Ekiel-Jeżewska, M.L., Wajnryb, E.: Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys. 111(7), 3265-3273 (1999) · doi:10.1063/1.479605
[6] Długosz, M., Antosiewicz, J.M.: Toward an accurate modeling of hydrodynamic effects on the translational and rotational dynamics of biomolecules in many-body systems. J. Phys. Chem. B 119(26), 8425-8439 (2015) · doi:10.1021/acs.jpcb.5b04675
[7] Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(July), 977 (2005) · doi:10.1103/RevModPhys.77.977
[8] Wang, C., Rallabandi, B., Hilgenfeldt, S.: Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25(2), 022002 (2013) · doi:10.1063/1.4790803
[9] Frey-Wyssling, A. (ed.): Deformation and Flow in Biological Systems. North-Holland Publishing Co., Amsterdam (1952) · Zbl 0807.73077
[10] Shadwick, R.E.: Mechanical design in arteries. J. Exp. Biol. 202(23), 3305-3313 (1999)
[11] Caro, C.G., Pedley, T.J., Schroter, R.C., Seed, W.A.: The Mechanics of the Circulation, 2nd edn. Cambridge University Press, Cambridge (2011) · Zbl 1234.93001 · doi:10.1017/CBO9781139013406
[12] Faxén, H.: Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann. Phys. 373(10), 89-119 (1922) · JFM 48.0947.01
[13] Wakiya, S.: A spherical obstacle in the flow of a viscous fluid through a tube. J. Phys. Soc. Jpn. 8(2), 254-256 (1953) · doi:10.1143/JPSJ.8.254
[14] Faxén, H.: About T. Bohlin’s paper: On the drag on rigid spheres, moving in a viscous liquid inside cylindrical tubes. Colloid Polym. Sci. 167(2), 146-146 (1959)
[15] Bohlin, T.: On the drag on a rigid sphere moving in a viscous liquid inside a cylindrical tube. Trans. R. Inst. Technol. Stockh. 155, 64 (1960) · Zbl 0239.76051
[16] Greenstein, T.: Theoretical Study of the Motion of One or More Spheres and a Fluid in an Infinitely Long Circular Cylinder. Ph.D. thesis (1967)
[17] Greenstein, T., Happel, J.: Theoretical study of the slow motion of a sphere and a fluid in a cylindrical tube. J. Fluid Mech. 34(04), 705-710 (1968) · Zbl 0167.55302 · doi:10.1017/S002211206800217X
[18] Sano, O.: Mobility of a small sphere in a viscous fluid confined in a rigid circular cylinder of finite length. J. Phys. Soc. Jpn. 56(8), 2713-2720 (1987) · doi:10.1143/JPSJ.56.2713
[19] Zimmerman, W.B.: On the resistance of a spherical particle settling in a tube of viscous fluid. Int. J. Eng. Sci. 42(17), 1753-1778 (2004) · Zbl 1211.76038 · doi:10.1016/j.ijengsci.2004.05.001
[20] Leichtberg, S., Pfeffer, R., Weinbaum, S.: Stokes flow past finite coaxial clusters of spheres in a circular cylinder. Int. J. Multiph. Flow 3, 147 (1976) · Zbl 0372.76030 · doi:10.1016/0301-9322(76)90005-7
[21] Yeh, H.Y., Keh, H.J.: Axisymmetric creeping motion of a prolate particle in a cylindrical pore. Eur. J. Mech. B Fluid 39, 52-58 (2013) · Zbl 1347.76051 · doi:10.1016/j.euromechflu.2012.11.005
[22] Hasimoto, H.: Slow motion of a small sphere in a cylindrical domain. J. Phys. Soc. Jpn. 41(6), 2143-2144 (1976) · doi:10.1143/JPSJ.41.2143
[23] Haberman, W.L.: Flow About a Sphere Rotating in a Viscous Liquid Inside a Coaxially Rotating Cylinder. David Taylor Model Basin Report No. 1578., US Navy Dept., Washington DC (1961)
[24] Brenner, H., Sonshine, R.M.: Slow viscous rotation of a sphere in a circular cylinder. Quart. J. Mech. Appl. Math. 17(1), 55-63 (1964) · Zbl 0118.20502 · doi:10.1093/qjmam/17.1.55
[25] Brenner, H.: Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length. Appl. Sci. Res. Sect. A 13(1), 81-120 (1964) · Zbl 0134.21201 · doi:10.1007/BF00382039
[26] Greenstein, T., Som, T.J.: Frictional force exerted on a slowly rotating eccentrically positioned sphere inside a circular cylinder. Phys. Fluids 19(1), 161-162 (1976) · doi:10.1063/1.861315
[27] Greenstein, T., Schiavina, G.L.: Torque exerted on a slowly rotating eccentrically positioned sphere within an infinitely long circular cylinder. Int. J. Multiph. Flow 2(3), 353-355 (1975) · doi:10.1016/0301-9322(75)90019-1
[28] Greenstein, T., Happel, J.: The slow motion of two particles symmetrically placed about the axis of a circular cylinder in a direction perpendicular to their line of centers. Appl. Sci. Res. 22(1), 345-359 (1970) · doi:10.1007/BF00400540
[29] Hirschfeld, B.R.: A Theoretical Study of the Slow Asymmetric Settling of an Arbitrarily-Positioned Particle in a Circular Cylinder. Ph.D. thesis (1972)
[30] Hirschfeld, B.R., Brenner, H., Falade, A.: First-and second-order wall effects upon the slow viscous asymmetric motion of an arbitrarily-shaped,-positioned and-oriented particle within a circular cylinder. Physicochem. Hydrodyn. 5, 99-133 (1984)
[31] Tözeren, H.: Torque on eccentric spheres flowing in tubes. J. Appl. Mech. 49(2), 279-283 (1982) · Zbl 0486.76055 · doi:10.1115/1.3162081
[32] Tözeren, H.: Boundary integral equation method for some Stokes problems. Int. J. Num. Methods Fluids 4(2), 159-170 (1984) · Zbl 0546.76051
[33] Tözeren, H.: Drag on eccentrically positioned spheres translating and rotating in tubes. J. Fluid Mech. 129, 77-90 (1983) · Zbl 0522.76033 · doi:10.1017/S0022112083000658
[34] Chen, S.B.: Axisymmetric creeping motion of particles towards a circular orifice or disk. Phys. Fluids (1994-present) 25(4), 043106 (2013) · doi:10.1063/1.4803002
[35] O’Neill, M.E.: On the modelling of particle-body interactions in Stokes flows involving a sphere and circular disc or a torus and circular cylinder using point singularities. Chem. Eng. Commun. 148(1), 161-182 (1996) · Zbl 0244.76016
[36] Rubinow, S.I., Keller, J.B.: Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theor. Biol. 35(2), 299-313 (1972) · doi:10.1016/0022-5193(72)90041-0
[37] Fung, Y.-C.: Biomechanics: Circulation. Springer, Berlin (2013)
[38] Bertram, C.D., Raymond, C.J., Butcher, K.S.A.: Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff. J. Biomech. Eng. 111(3), 185-191 (1989) · doi:10.1115/1.3168364
[39] Shankar, V.: Stability of fluid flow through deformable neo-Hookean tubes. J. Fluid Mech. 627, 291-322 (2009) · Zbl 1171.76363
[40] Shankar, V.: Stability of pressure-driven flow in a deformable neo-Hookean channel. J. Fluid Mech. 659, 318-350 (2010) · Zbl 1205.76098
[41] Grotberg, J.B.: Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3(1), 421-457 (2001) · doi:10.1146/annurev.bioeng.3.1.421
[42] Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36(1), 121 (2004) · Zbl 1081.76063 · doi:10.1146/annurev.fluid.36.050802.121918
[43] Canic, S., Tambaca, J., Guidoboni, G., Mikelic, A., Hartley, C.J., Rosenstrauch, D.: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164-193 (2006) · Zbl 1121.35091 · doi:10.1137/060651562
[44] Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381-411 (2004) · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[45] Holmes, D.P., Tavakol, B., Froehlicher, G., Stone, H.A.: Control and manipulation of microfluidic flow via elastic deformations. Soft Matter 9(29), 7049-7053 (2013) · doi:10.1039/C3SM51002F
[46] Nahar, S., Jeelani, S.A.K., Windhab, E.J.: Influence of elastic tube deformation on flow behavior of a shear thinning fluid. Chem. Eng. Sci. 75, 445-455 (2012) · doi:10.1016/j.ces.2012.03.051
[47] Nahar, S., Jeelani, S.A.K., Windhab, E.J.: Prediction of velocity profiles of shear thinning fluids flowing in elastic tubes. Chem. Eng. Commun. 200(6), 820-835 (2013) · doi:10.1080/00986445.2012.722150
[48] Mikelic, A., Guidoboni, G., Canic, S.: Fluid-structure interaction in a pre-stressed tube with thick elastic walls i: the stationary Stokes problem. Netw. Heterog. Media 2(3), 397 (2007) · Zbl 1260.35147
[49] Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluid Struct. 20(6), 817-835 (2005) · doi:10.1016/j.jfluidstructs.2005.03.008
[50] Ramanujan, S., Pozrikidis, C.: Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117-143 (1998) · Zbl 0921.76058 · doi:10.1017/S0022112098008714
[51] Barthès-Biesel, D.: Modeling the motion of capsules in flow. Curr. Opin. Colloid Interface Sci. 16(1), 3-12 (2011) · doi:10.1016/j.cocis.2010.07.001
[52] Lac, E., Barthès-Biesel, D., Pelekasis, N.A., Tsamopoulos, J.: Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303-334 (2004) · Zbl 1131.74306 · doi:10.1017/S002211200400062X
[53] Barthès-Biesel, D.: Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 25-52 (2016) · Zbl 1356.76459 · doi:10.1146/annurev-fluid-122414-034345
[54] Helfrich, W.: Elastic properties of lipid bilayers - theory and possible experiments. Z. Naturf. C. 28, 693 (1973) · doi:10.1515/znc-1973-11-1209
[55] Zhong-Can, O.-Y., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39(10), 5280 (1989) · doi:10.1103/PhysRevA.39.5280
[56] Guckenberger, A., Gekle, S.: Theory and algorithms to compute Helfrich bending forces: a review. J. Phys. Condens. Matter 29, 203001 (2017) · doi:10.1088/1361-648X/aa6313
[57] Felderhof, B.U.: Effect of surface tension and surface elasticity of a fluid-fluid interface on the motion of a particle immersed near the interface. J. Chem. Phys. 125(14), 144718 (2006) · doi:10.1063/1.2356864
[58] Felderhof, B.U.: Effect of surface elasticity on the motion of a droplet in a viscous fluid. J. Chem. Phys. 125(12), 124904 (2006) · doi:10.1063/1.2352757
[59] Daddi-Moussa-Ider, A., Guckenberger, A., Gekle, S.: Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles. Phys. Rev. E 93, 012612 (2016) · doi:10.1103/PhysRevE.93.012612
[60] Daddi-Moussa-Ider, A., Gekle, S.: Hydrodynamic interaction between particles near elastic interfaces. J. Chem. Phys. 145(1), 014905 (2016) · doi:10.1063/1.4955099
[61] Daddi-Moussa-Ider, A., Lisicki, M., Gekle, S.: Mobility of an axisymmetric particle near an elastic interface. J. Fluid Mech. 811, 210-233 (2017) · Zbl 1383.76559 · doi:10.1017/jfm.2016.739
[62] Daddi-Moussa-Ider, A., Guckenberger, A., Gekle, S.: Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation. Phys. Fluids 28(7), 071903 (2016) · doi:10.1063/1.4955013
[63] Daddi-Moussa-Ider, A., Gekle, S.: Axisymmetric motion of a solid particle nearby a spherical elastic membrane. Phys. Rev. E 95, 013108 (2017) · doi:10.1103/PhysRevE.95.013108
[64] Daddi-Moussa-Ider, A., Lisicki, M., Gekle, S.: Hydrodynamic mobility of a solid particle near a spherical elastic membrane. II. Asymmetric motion. Phys. Rev. E 95(5), 053117 (2017) · doi:10.1103/PhysRevE.95.053117
[65] Blake, J.R.: A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Philos. Soc. 70(02), 303-310 (1971) · Zbl 0244.76016 · doi:10.1017/S0305004100049902
[66] Sekimoto, K., Leibler, L.: A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. EPL 23(2), 113 (1993) · doi:10.1209/0295-5075/23/2/006
[67] Weekley, S.J., Waters, S.L., Jensen, O.E.: Transient elastohydrodynamic drag on a particle moving near a deformable wall. Q. J. Mech. Appl. Math. 59(2), 277-300 (2006) · Zbl 1105.76019 · doi:10.1093/qjmam/hbl002
[68] Salez, T., Mahadevan, L.: Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. J. Fluid Mech. 779, 181-196 (2015) · Zbl 1360.76084 · doi:10.1017/jfm.2015.425
[69] Saintyves, B., Jules, T., Salez, T., Mahadevan, L.: Self-sustained lift and low friction via soft lubrication. Proc. Natl. Acad. Sci. 113(21), 5847-5849 (2016) · doi:10.1073/pnas.1525462113
[70] Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L., Stone, H.A.: Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids 2, 074102 (2017) · doi:10.1103/PhysRevFluids.2.074102
[71] Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Courier Corporation, North Chelmsford (2013)
[72] Bickel, T.: Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20, 379-385 (2006) · doi:10.1140/epje/i2006-10026-0
[73] Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995) · Zbl 0849.33001
[74] Brenner, H., Happel, J.: Slow viscous flow past a sphere in a cylindrical tube. J. Fluid Mech. 4(02), 195-213 (1958) · Zbl 0083.40807 · doi:10.1017/S0022112058000392
[75] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, vol. 1. Dover, New York (1972) · Zbl 0543.33001
[76] Haberman, R.: Elementary Applied Partial Differential Equations, vol. 987. Prentice Hall, Englewood Cliffs, NJ (1983) · Zbl 0537.35001
[77] Rao, P.R., Zahalak, G.I., Sutera, S.P.: Large deformations of elastic cylindrical capsules in shear flows. J. Fluid Mech. 270, 73-90 (1994) · Zbl 0813.76020 · doi:10.1017/S0022112094004209
[78] Bächer, C., Schrack, L., Gekle, S.: Clustering of microscopic particles in constricted blood flow. Phys. Rev. Fluids 2, 013102 (2017) · doi:10.1103/PhysRevFluids.2.013102
[79] Bukman, D.J., Yao, J.H., Wortis, M.: Stability of cylindrical vesicles under axial tension. Phys. Rev. E 54(5), 5463 (1996) · doi:10.1103/PhysRevE.54.5463
[80] Luo, Z.Y., Wang, S.Q., He, L., Xu, F., Bai, B.F.: Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matter 9, 9651-9660 (2013) · doi:10.1039/c3sm51823j
[81] Zheng, G.H., Powell, R.L., Stroeve, P.: Torque and frictional force acting on a slowly rotating sphere arbitrarily positioned in a circular cylinder. Ind. Eng. Chem. Res. 31(4), 1190-1194 (1992) · doi:10.1021/ie00004a032
[82] Wang, W., Parker, K.H.: The effect of deformable porous surface layers on the motion of a sphere in a narrow cylindrical tube. J. Fluid Mech. 283, 287-305 (1995) · Zbl 0839.76089 · doi:10.1017/S0022112095002321
[83] Linton, C.M.: Multipole methods for boundary-value problems involving a sphere in a tube. IMA J. Appl. Math. 55(2), 187-204 (1995) · Zbl 0834.35103 · doi:10.1093/imamat/55.2.187
[84] Crocker, J.C.: Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys. 106(7), 2837-2840 (1997) · doi:10.1063/1.473381
[85] Dufresne, E.R., Squires, T.M., Brenner, M.P., Grier, D.G.: Hydrodynamic coupling of two Brownian spheres to a planar surface. Phys. Rev. Lett. 85(15), 3317 (2000) · doi:10.1103/PhysRevLett.85.3317
[86] Felderhof, B.U.: Hydrodynamic interaction between two spheres. Phys. A 89(2), 373-384 (1977) · doi:10.1016/0378-4371(77)90111-X
[87] Bracewell, R.: The Fourier Transform and Its Applications. McGraw-Hill, New York City (1999) · Zbl 0149.08301
[88] Hahn, T.: Cuba—a library for multidimensional numerical integration. Comput. Phys. Commun. 168(2), 78-95 (2005) · Zbl 1196.65052 · doi:10.1016/j.cpc.2005.01.010
[89] Hahn, T.: Concurrent cuba. Comput. Phys. Commun. 207, 341-349 (2016) · Zbl 1380.65471 · doi:10.1016/j.cpc.2016.05.012
[90] Bickel, T.: Hindered mobility of a particle near a soft interface. Phys. Rev. E 75, 041403 (2007) · doi:10.1103/PhysRevE.75.041403
[91] Phan-Thien, N., Tullock, D.: Completed double layer boundary element method in elasticity. J. Mech. Phys. Solids 41(6), 1067-1086 (1993) · Zbl 0773.73097 · doi:10.1016/0022-5096(93)90055-K
[92] Phan-Thien, N., Tullock, D.: Completed double layer boundary element method in elasticity and Stokes flow: distributed computing through pvm. Comput. Mech. 14(4), 370-383 (1994) · Zbl 0807.73077
[93] Kohr, M., Pop, I.I.: Viscous Incompressible Flow for Low Reynolds Numbers, vol. 16. Wit Pr/Comp. Mech, Ashurst (2004) · Zbl 1064.76001
[94] Zhao, H., Shaqfeh, E.S.G.: Shear-induced platelet margination in a microchannel. Phys. Rev. E 83, 061924 (2011) · doi:10.1103/PhysRevE.83.061924
[95] Zhao, H., Shaqfeh, E.S.G., Narsimhan, V.: Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24(1), 011902 (2012) · doi:10.1063/1.3677935
[96] Pozrikidis, C.: Interfacial dynamics for Stokes flow. J. Comput. Phys. 169, 250 (2001) · Zbl 1046.76012 · doi:10.1006/jcph.2000.6582
[97] Guckenberger, A., Schraml, M.P., Chen, P.G., Leonetti, M., Gekle, S.: On the bending algorithms for soft objects in flows. Comput. Phys. Commun. 207, 1-23 (2016) · Zbl 1375.76128 · doi:10.1016/j.cpc.2016.04.018
[98] Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485-3505 (2011) · Zbl 1225.76231
[99] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method: Principles and Practice. Springer, Berlin (2016) · Zbl 1362.76001
[100] Conn, A.R., Gould, N.I.M., Toint, PhL: Trust Region Methods, vol. 1. SIAM, New York (2000) · Zbl 0958.65071 · doi:10.1137/1.9780898719857
[101] Friese, M.E.J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P., Hanstorp, D.: Optically driven micromachine elements. Appl. Phys. Lett. 78(4), 547-549 (2001) · doi:10.1063/1.1339995
[102] Deserno, M.: Fluid lipid membranes: from differential geometry to curvature stresses. Chem. Phys. Lipids 185, 11-45 (2015) · doi:10.1016/j.chemphyslip.2014.05.001
[103] Green, A.E., Adkins, J.C.: Large Elastic Deformations and Non-linear Continuum Mechanics. Oxford University Press, Oxford (1960) · Zbl 0090.17501
[104] Zhu, L.: Simulation of Individual Cells in Flow. Ph.D. thesis (2014)
[105] Krüger, T.: Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear. Springer, Berlin (2012) · doi:10.1007/978-3-8348-2376-2
[106] Zhu, L., Brandt, L.: The motion of a deforming capsule through a corner. J. Fluid Mech. 770, 374-397 (2015) · Zbl 1337.76076 · doi:10.1017/jfm.2015.157
[107] Synge, J.L., Schild, A.: Tensor Calculus, vol. 5. Courier Corporation, North Chelmsford (1969) · Zbl 0038.32301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.