×

LES-Lagrangian particle method for turbulent reactive flows based on the approximate deconvolution model and mixing model. (English) Zbl 1349.76145

Summary: We propose a numerical method for turbulent reactive flows using a large eddy simulation (LES) based on the approximate deconvolution model (ADM). LES based on the ADM is combined with a Lagrangian notional particle (LP) method for computing reactive flows without using models for chemical source terms. In the LP method, values of scalars are assigned to each particle. The evolutions of Lagrangian particles in physical and scalar composition spaces are modeled by using the mixing model for molecular diffusion and the resolved velocity field of LES. We also propose a particles-interaction mixing model using a mixing volume concept, in which the mixing timescale is determined by relating the decay of scalar variance in the mixing volume to the scalar dissipation rate. The LES-LP method based on the ADM and the mixing model is applied to a planar jet with a second-order reaction for testing the numerical method. The statistics obtained by the LES-LP method are compared with the direct numerical simulation data. The results show that the evolutions of Lagrangian particles are well modeled in the LES-LP method by using the resolved velocity and the mixing model, and this method can accurately predict the statistical properties of reactive scalars. The mixing timescale depends on the distance among the Lagrangian particles. It is also shown that the present mixing model can implicitly take into account the effect of distance among the particles by adjusting the mixing timescale without using any model parameters.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
76F25 Turbulent transport, mixing
76V05 Reaction effects in flows
80A32 Chemically reacting flows
92E99 Chemistry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fox, R. O., Computational Models for Turbulent Reacting Flows (2003), Cambridge Univ. Press
[2] Schumann, U., Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer, Atmos. Environ., 23, 8, 1713-1727 (1989)
[3] Sykes, R. I.; Henn, D. S.; Parker, S. F.; Lewellen, W. S., Large-eddy simulation of a turbulent reacting plume, Atmos. Environ., 26, 14, 2565-2574 (1992)
[4] Michioka, T.; Komori, S., Large-eddy simulation of a turbulent reacting liquid flow, AIChE J., 50, 11, 2705-2720 (2004)
[5] Bilger, R. W., Conditional moment closure for turbulent reacting flow, Phys. Fluids A, 5, 436 (1993) · Zbl 0767.76075
[6] Pope, S. B., PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci., 11, 2, 119-192 (1985)
[7] Haworth, D. C., Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci., 36, 2, 168-259 (2010)
[8] Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 3, 99-164 (1963)
[9] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 7, 1760-1765 (1991) · Zbl 0825.76334
[10] Moin, P.; Squires, K.; Cabot, W.; Lee, S., A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, 3, 11, 2746-2757 (1991) · Zbl 0753.76074
[11] Métais, O.; Lesieur, M., Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., 239, 157-194 (1992) · Zbl 0825.76272
[13] Stolz, S.; Adams, N. A., An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids, 11, 7, 1699-1701 (1999) · Zbl 1147.76506
[14] Stolz, S.; Adams, N. A.; Kleiser, L., An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows, Phys. Fluids, 13, 4, 997-1015 (2001) · Zbl 1184.76530
[15] Stolz, S.; Adams, N. A.; Kleiser, L., The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction, Phys. Fluids, 13, 10, 2985-3001 (2001) · Zbl 1184.76531
[16] Schlatter, P.; Stolz, S.; Kleiser, L., LES of transitional flows using the approximate deconvolution model, Int. J. Heat Fluid Flow, 25, 3, 549-558 (2004)
[17] Aniszewski, W.; Bogusławski, A.; Marek, M.; Tyliszczak, A., A new approach to sub-grid surface tension for LES of two-phase flows, J. Comput. Phys., 231, 21, 7368-7397 (2012) · Zbl 1284.76284
[18] Le Ribault, C.; Sarkar, S.; Stanley, S. A., Large eddy simulation of a plane jet, Phys. Fluids, 11, 10, 3069-3083 (1999) · Zbl 1149.76449
[19] da Silva, C. B.; Hunt, J. C.R.; Eames, I.; Westerweel, J., Interfacial layers between regions of different turbulence intensity, Annu. Rev. Fluid Mech., 46, 567-590 (2014) · Zbl 1297.76074
[20] da Silva, C. B., The behavior of subgrid-scale models near the turbulent/nonturbulent interface in jets, Phys. Fluids, 21, 8, 081702 (2009) · Zbl 1183.76161
[21] Bogey, C.; Bailly, C., Decrease of the effective Reynolds number with eddy-viscosity subgrid modeling, AIAA J., 43, 2, 437-439 (2005)
[22] Domaradzki, J. A.; Adams, N. A., Direct modelling of subgrid scales of turbulence in large eddy simulations, J. Turbul., 3, 24, 1 (2002)
[23] Hill, J. C., Homogeneous turbulent mixing with chemical reaction, Annu. Rev. Fluid Mech., 8, 135-161 (1976) · Zbl 0406.76082
[24] Colucci, P. J.; Jaberi, F. A.; Givi, P.; Pope, S. B., Filtered density function for large eddy simulation of turbulent reacting flows, Phys. Fluids, 10, 499 (1998) · Zbl 1185.76747
[25] Warhaft, Z.; Lumley, J. L., An experimental study of the decay of temperature fluctuations in grid-generated turbulence, J. Fluid Mech., 88, 4, 659-684 (1978)
[26] Yeung, P. K.; Xu, S.; Sreenivasan, K. R., Schmidt number effects on turbulent transport with uniform mean scalar gradient, Phys. Fluids, 14, 12, 4178-4191 (2002) · Zbl 1185.76413
[27] Watanabe, T.; Sakai, Y.; Nagata, K.; Terashima, O.; Suzuki, H.; Hayase, T.; Ito, Y., Visualization of turbulent reactive jet by using direct numerical simulation, Int. J. Model. Simul. Sci. Comput., 4, 1341001 (2013)
[28] Watanabe, T.; Sakai, Y.; Nagata, K.; Ito, Y.; Hayase, T., Reactive scalar field near the turbulent/non-turbulent interface in a planar jet with a second-order chemical reaction, Phys. Fluids, 26, 10, 105111 (2014)
[29] Layton, W. J.; Rebholz, L. G., Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis (2012), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 1241.76002
[30] Mathew, J.; Lechner, R.; Foysi, H.; Sesterhenn, J.; Friedrich, R., An explicit filtering method for large eddy simulation of compressible flows, Phys. Fluids, 15, 8, 2279-2289 (2003) · Zbl 1186.76355
[31] Stolz, S.; Adams, N. A., Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique, Phys. Fluids, 15, 8, 2398-2412 (2003) · Zbl 1186.76501
[32] Komori, S.; Nagata, K., Effects of molecular diffusivities on counter-gradient scalar and momentum transfer in strongly stable stratification, J. Fluid Mech., 326, 205-237 (1996)
[33] Fox, R. O.; Villermaux, J., Unsteady-state IEM model: numerical simulation and multiple-scale perturbation analysis near perfect-micromixing limit, Chem. Eng. Sci., 45, 2, 373-386 (1990)
[34] Bogey, C.; Bailly, C., Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation, J. Fluid Mech., 627, 129-160 (2009) · Zbl 1171.76396
[35] Jiménez, C.; Ducros, F.; Cuenot, B.; Bédat, B., Subgrid scale variance and dissipation of a scalar field in large eddy simulations, Phys. Fluids, 13, 6, 1748-1754 (2001) · Zbl 1184.76254
[36] Pierce, C. D.; Moin, P., A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar, Phys. Fluids, 10, 3041 (1998) · Zbl 1185.76781
[37] Cleary, M. J.; Klimenko, A. Y., A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows, Phys. Fluids, 23, 11, 115102 (2011)
[38] Cleary, M. J.; Klimenko, A. Y., A generalised multiple mapping conditioning approach for turbulent combustion, Flow Turbul. Combust., 82, 4, 477-491 (2009) · Zbl 1259.76015
[39] Curl, R. L., Dispersed phase mixing: I. Theory and effects in simple reactors, AIChE J., 9, 2, 175-181 (1963)
[40] Correa, S. M., A direct comparison of pair-exchange and IEM models in premixed combustion, Combust. Flame, 103, 3, 194-206 (1995)
[41] Mitarai, S.; Riley, J. J.; Kosaly, G., Testing of mixing models for Monte Carlo probability density function simulations, Phys. Fluids, 17, 4, 047101 (2005) · Zbl 1187.76358
[42] Watanabe, T.; Sakai, Y.; Nagata, K.; Ito, Y.; Hayase, T., Enstrophy and passive scalar transport near the turbulent/non-turbulent interface in a turbulent planar jet flow, Phys. Fluids, 26, 10, 105103 (2014)
[43] Watanabe, T.; Sakai, Y.; Nagata, K.; Terashima, O.; Kubo, T., Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction, Exp. Fluids, 53, 5, 1369-1383 (2012)
[44] Watanabe, T.; Sakai, Y.; Nagata, K.; Terashima, O., Turbulent Schmidt number and eddy diffusivity change with a chemical reaction, J. Fluid Mech., 754, 98-121 (2014)
[45] Abe, H.; Kawamura, H.; Matsuo, Y., Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence, ASME J. Fluids Eng., 123, 2, 382-393 (2001)
[46] Bilger, R. W.; Saetran, L. R.; Krishnamoorthy, L. V., Reaction in a scalar mixing layer, J. Fluid Mech., 233, 211-242 (1991)
[47] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 1, 90-124 (1998) · Zbl 0932.76054
[48] Spalart, P. R.; Moser, R. D.; Rogers, M. M., Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions, J. Comput. Phys., 96, 2, 297-324 (1991) · Zbl 0726.76074
[49] Dai, Y.; Kobayashi, T.; Taniguchi, N., Large eddy simulation of plane turbulent jet flow using a new outflow velocity boundary condition, JSME Int. J. Ser. B Fluids Therm. Eng., 37, 2, 242-253 (1994)
[50] da Silva, C. B.; Lopes, D. C.; Raman, V., The effect of subgrid-scale models on the entrainment of a passive scalar in a turbulent planar jet, J. Turbul., 16, 4, 342-366 (2015)
[51] Stanley, S. A.; Sarkar, S.; Mellado, J. P., A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation, J. Fluid Mech., 450, 377-407 (2002) · Zbl 1049.76558
[52] Pope, S. B., Turbulent Flows (2000), Cambridge Univ. Press · Zbl 0802.76033
[53] Klein, M.; Sadiki, A.; Janicka, J., A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys., 186, 2, 652-665 (2003) · Zbl 1047.76522
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.