×

A conservative, positivity preserving scheme for reactive solute transport problems in moving domains. (English) Zbl 1349.65467

Summary: We study the mathematical models and numerical schemes for reactive transport of a soluble substance in deformable media. The medium is a channel with compliant adsorbing walls. The solutes are dissolved in the fluid flowing through the channel. The fluid, which carries the solutes, is viscous and incompressible. The reactive process is described as a general physico-chemical process taking place on the compliant channel wall. The problem is modeled by a convection-diffusion adsorption-desorption equation in moving domains. We present a conservative, positivity preserving, high resolution ALE-FCT scheme for this problem in the presence of dominant transport processes and wall reactions on the moving wall. A Patankar type time discretization is presented, which provides conservative treatment of nonlinear reactive terms. We establish CFL-type constraints on the time step, and show the mass conservation of the time discretization scheme. Numerical simulations are performed to show validity of the schemes against effective models under various scenarios including linear adsorption-desorption, irreversible wall reaction, infinite adsorption kinetics, and nonlinear Langmuir kinetics. The grid convergence of the numerical scheme is studied for the case of fixed meshes and moving meshes in fixed domains. Finally, we simulate reactive transport in moving domains under linear and nonlinear chemical reactions at the wall, and show that the motion of the compliant channel wall enhances adsorption of the solute from the fluid to the channel wall. Consequences of this result are significant in the area of, e. g., nano-particle cancer drug delivery. Our result shows that periodic excitation of the cancerous tissue using, e. g., ultrasound, may enhance adsorption of cancer drugs carried by nano-particles via the human vasculature.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76T20 Suspensions
76V05 Reaction effects in flows
82C70 Transport processes in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.; Brizzi, R.; Mikelić, A.; Piatnitski, A., Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media, Chem. Eng. Sci., 65, 2292-2300 (2010)
[2] Aris, R., Proc. R. Soc. Lond. A, 1956, 1200, 67-77 (1956)
[3] Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics (1990), Dover Publications
[4] Badia, S.; Codina, R., Analysis of a stabilized finite element approximation of the transient convection-diffusion using an ALE framework, SIAM J. Numer. Anal., 44, 5, 2159-2197 (2006) · Zbl 1126.65079
[5] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227, 7027-7051 (2008) · Zbl 1140.74010
[6] Balakotaiah, V.; Chang, H., Dispersion of chemical solutes in chromatographs and reactors, Philos. Trans. R. Soc. Lond. A, 351, 1695, 39-75 (1995) · Zbl 0897.92039
[7] Barrett, J.; Knabner, P., Finite element approximation of the transport of reactive solutes in porous media. Part I: Error estimates for nonequilibrium adsorption processes, SIAM J. Numer. Anal., 34, 1, 201-227 (1997) · Zbl 0870.76039
[8] Boiarkine, O.; Kuzmin, D.; Čanić, S.; Guidoboni, G.; Mikelić, A., A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains, J. Comput. Phys., 230, 2896-2914 (2011) · Zbl 1218.65106
[9] Bolster, D.; Dentz, M.; Le Borgne, T., Solute dispersion in channels with periodically varying apertures, Phys. Fluids, 21, 056601 (2009) · Zbl 1183.76101
[10] Bukač, M.; Čanić, S.; Glowinski, R.; Muha, B.; Quaini, A., A modular, operator splitting scheme for fluid-structure interaction problems with thick structure, Int. J. Numer. Methods Fluids, 29, 11, 1192-1213 (2013)
[11] Bukač, M.; Čanić, S., Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model and experimental validation, Math. Biosci. Eng., 10, 2, 295-318 (2013) · Zbl 1259.35203
[12] Burchard, H.; Deleursnijder, E.; Meister, A., A high-order conservative Patankar-type discretization for stiff systems of production-destruction equations, Appl. Numer. Math., 47, 1, 1-30 (2003) · Zbl 1028.80008
[13] Burchard, H.; Deleersnijder, E.; Meister, A., Application of modified Patankar schemes to stiff biogeochemical models for the water column, Ocean Dyn., 55, 3-4, 326-337 (2005)
[14] Burchard, H.; Bolding, K.; Kühn, W.; Meister, A.; Neumann, T.; Umlauf, L., Description of a flexible and extendable physical-biogeochemical model system for the water column, J. Mar. Syst., 61, 3-4, 180-211 (2006)
[15] Čanić, Sunčica; Mikelić, Andro; Kim, Tae-Beom; Guidoboni, Giovanna, Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow, (Bressan, Alberto; Chen, Gui-Qiang G.; Lewicka, Marta; Wang, Dehua, Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications, The IMA Volumes in Mathematics and Its Applications, vol. 153 (2011), Springer: Springer US), 235-256 · Zbl 1245.35154
[16] Čanić, S.; Muha, B., Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207, 3, 919-968 (2013) · Zbl 1260.35148
[17] Čanić, S.; Muha, B., A nonlinear moving boundary problem of parabolic-hyperbolic-hyperbolic fluid-multi-layered structure interaction problems, (Ancona, F.; Bressan, A.; Marcati, P.; Marse, A., Hyperbolic Problems: Theory, Numerics, Applications (2013), American Institute of Mathematical Sciences (AIMS) Publications)
[18] Čanić, S.; Muha, B.; Bukač, M., Fluid-structure interaction with multiple structural layers: theory and numerics, (Boduar, T.; Galdi, G. P.; Necasov, S., Fluid-Structure Interaction in Biomedical Applications. Fluid-Structure Interaction in Biomedical Applications, Advances in Fluid Mechanics (2013)), Book chapter
[19] Čanić, S.; Muha, B., Existence of a solution to a fluid-multi-layered structure interaction problem, J. Differ. Equ., 256, 658-706 (2014) · Zbl 1326.35282
[20] Chakraborty, S.; Balakotaiah, V., Low-dimensional models for describing mixing effects in laminar flow tubular reactors, Chem. Eng. Sci., 57, 13, 2545-2564 (2002)
[21] Choquet, C.; Mikelić, A., Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore, Appl. Anal., 87, 12, 1373-1395 (2008) · Zbl 1154.35304
[22] Choquet, C.; Mikelić, A., Rigorous upscaling of the reactive flow with finite kinetics and under dominant Péclet number, Contin. Mech. Thermodyn., 21, 2, 125-140 (2009) · Zbl 1170.76057
[23] Choquet, C.; Rosier, C., Effective models for reactive flow under a dominant Péclet number and order one Damköhler number: numerical simulations, Nonlinear Anal., Real World Appl., 15, 345-360 (2012) · Zbl 1308.80014
[24] Fletcher, C. A.J., The group finite element formulation, Comput. Methods Appl. Mech. Eng., 37, 2, 225-244 (1983) · Zbl 0551.76012
[25] Formaggia, L.; Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 7, 2, 105-131 (1999) · Zbl 0942.65113
[26] Formaggia, L.; Nobile, F., Stability analysis of second-order time accurate schemes for ALE-FEM, Comput. Methods Appl. Mech. Eng., 193, 39-41, 4097-4116 (2004) · Zbl 1175.76091
[27] Formaggia, L.; Minisini, S.; Zunino, P., Modeling polymeric controlled drug release and transport phenomena in the arterial tissue, Math. Models Methods Appl. Sci., 20, 10, 1759-1786 (2010) · Zbl 1201.92037
[28] Formaggia, L.; Scotti, A., Positivity and conservation properties of some integration schemes for mass action kinetics, SIAM J. Numer. Anal., 49, 3, 1267-1288 (2011) · Zbl 1229.80020
[29] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Čanić, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228, 18, 6916-6937 (2009) · Zbl 1261.76056
[30] Gogoi, S. B., Adsorption-desorption of surfactant for enhanced oil recovery, Transp. Porous Media, 90, 2, 589-604 (2011)
[31] Guiochon, G.; Shirazi, S.; Katti, A., Fundamentals of Preparative and Nonlinear Chromatography (2006), Academic Press
[32] John, V.; Schmeyer, E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Eng., 198, 475-494 (2008) · Zbl 1228.76088
[33] Kim, T.; Čanić, S.; Guidoboni, G., Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow, Commun. Pure Appl. Anal., 9, 4, 839-865 (2010) · Zbl 1201.35083
[34] Kumar, K.; Wheeler, M.; Wick, T., Reactive flow and reaction-induced boundary movement in a thin channel, SIAM J. Sci. Comput., 35, 6, B1235-B1266 (2013) · Zbl 1292.76042
[35] Kuzmin, D.; Möller, M., Algebraic flux correction. I. Scalar conservation laws, (Kuzmin, D.; Löhner, R.; Turek, S., Flux-Corrected Transport. Flux-Corrected Transport, Scientific Computation (2005), Springer: Springer Berlin, Heidelberg), 155-206 · Zbl 1094.76040
[36] Kuzmin, D., Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys., 228, 7, 2517-2534 (2009) · Zbl 1275.76171
[37] Kuzmin, D., Linearity-preserving flux correction and convergence acceleration for constrained Galerkin scheme, J. Comput. Appl. Math., 236, 9, 2317-2337 (2012) · Zbl 1241.65083
[38] Löhner, R.; Morgan, K.; Peraire, J.; Vahdati, M., Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 7, 1093-1109 (1987) · Zbl 0633.76070
[39] Löhner, R.; Morgan, K.; Vahdati, M.; Boris, J. P.; Book, D. L., FEM-FCT: combining unstructured grids with high resolution, Commun. Appl. Numer. Methods, 4, 717-729 (1988) · Zbl 0659.65085
[40] MacKinnon, R.; Carey, G., Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport, Int. J. Numer. Methods Fluids, 41, 2, 151-183 (2003) · Zbl 1025.76029
[41] Mikelić, A.; Devigne, V.; van Duijn, C. J., Rigorous upscaling of the reactive flow through a pore, under dominant Péclet and Damköhler numbers, SIAM J. Math. Anal., 38, 4, 1262-1287 (2006) · Zbl 1120.35007
[42] Mikelić, A.; Rosier, C., Rigorous upscaling of the infinite adsorption rate reactive flow under dominant Péclet number through a pore, Ann. Univ. Ferrara, 53, 2, 333-359 (2007) · Zbl 1181.35013
[43] Mikelić, A.; van Duijn, C. J., Rigorous derivation of a hyperbolic model for Taylor dispersion, Math. Models Methods Appl. Sci., 21, 5, 1095 (2011) · Zbl 1223.35036
[44] Möller, M.; Kuzmin, D.; Kourounis, D., Implicit FEM-FCT algorithms and discrete Newton methods for transient convection problems, Int. J. Numer. Methods Fluids, 57, 6, 761-792 (2008) · Zbl 1264.76063
[45] Ng, C., Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions, Proc. R. Soc. A, 462, 2066, 481-515 (2006) · Zbl 1149.76684
[46] Nobile, F., Numerical approximation of fluid-structure interaction problems with applications to haemodynamics (2001), École polytechnique fédérale de Lausanne, Thesis
[47] Marušić-Paloka, E.; Pažanin, I., On reactive solute transport through a curved pipe, Appl. Math. Lett., 24, 6, 878-882 (2011) · Zbl 1402.76150
[48] Prigiobbe, V.; Hesse, M. A.; Bryant, S. L., Anomalous reactive transport in the framework of the theory of chromatography, Transp. Porous Media, 93, 1, 127-145 (2012)
[49] Radu, F.; Pop, I., Newton method for reactive solute transport with equilibrium sorption in porous media, J. Comput. Appl. Math., 234, 7, 2118-2127 (2010) · Zbl 1402.76075
[50] Scovazzi, G.; López Ortega, A., Algebraic flux correction and geometric conservation in ALE computations, (Kuzmin, D.; Löhner, R.; Turek, S., Flux Corrected Transport. Flux Corrected Transport, Scientific Computation (2012), Springer), 299-343
[51] Seadler, J. D.; Henley, E. J., Separation Process Principles (2005), John Wiley & Sons Inc.
[52] Taylor, G., Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 219, 1137, 186-203 (1953)
[53] van Duijn, C. J.; Mikelić, A.; Pop, I. S.; Rosier, C., Effective dispersion equations for reactive flows with dominant Péclet and Damköhler numbers, (Advances in Chemical Engineering, vol. 34 (2008)), 1-45
[54] Wolf, D., Kinetics of heterogeneous catalytic reactions, (Basic Principles in Applied Catalysis. Basic Principles in Applied Catalysis, Springer Series in Chemical Physics, vol. 75 (2004)), 455-476
[55] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[56] Zunino, P., Mathematical and numerical modeling of mass transfer in the vascular system (2002), École polytechnique fédérale de Lausanne, Thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.