×

Integrability of vector fields versus inverse Jacobian multipliers and normalizers. (English) Zbl 1373.34003

In this interesting paper, the authors provide characterizations of integrability of finite families (systems) of vector fields in \(\mathbb{F}^n\), where \(\mathbb{F}=\mathbb{C}\) or \(\mathbb{R}\). The integrability of a family of \(k<n\) vector fields means the existence of \(n-k\) common first integrals which are functionally independent.
In the last years appeared a series of deep results for vector fields (i.e., \(k=1\)) which provide characterizations of integrability via inverse Jacobian multipliers and normalizers. In order to extend them for arbitrary \(k\), the authors needed to introduce the notion of inverse Jacobian multiplier matrix for a finite family of vector fields, as a generalization of the notion of inverse Jacobian multiplier for a vector field.
Some result add useful informations to the classical Frobenius integrability theorem.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C41 Equivalence and asymptotic equivalence of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Abraham, <em>Foundations of Mechnics</em>,, The Benjamin/Cummings Pub. (1978)
[2] V. I. Arnold, <em>Mathmatical Methods of Classical Mechanics</em>,, Springer-Verlag (1989) · doi:10.1007/978-1-4757-2063-1
[3] L. R. Berrone, Inverse Jacobian multipliers,, Rend. Circ. Mat. Palermo, LII, 77 (2003) · Zbl 1196.34038 · doi:10.1007/BF02871926
[4] A. Buică, Existence of inverse Jacobian multipliers around Hopf points in \(\mathbb R^3\): Emphasis on the center problem,, J. Differential Equations, 252, 6324 (2012) · Zbl 1252.37040 · doi:10.1016/j.jde.2012.03.009
[5] A. Buică, Multiple Hopf bifurcation in \(\mathbb R^3\) and inverse Jacobi multipliers,, J. Differential Equations, 256, 310 (2014) · Zbl 1346.37050 · doi:10.1016/j.jde.2013.09.006
[6] C. Camacho, <em>Geometric theory of foliations</em>, translated from the Portuguese by Sue E. Goodman,, Birkhäuser Boston (1985) · Zbl 0568.57002 · doi:10.1007/978-1-4612-5292-4
[7] A. Enciso, Existence and vanishing set of inverse integrating factors for analytic vector fields,, Bull. London Math. Soc., 41, 1112 (2009) · Zbl 1192.34038 · doi:10.1112/blms/bdp090
[8] I. A. García, The inverse integrating factor and the Poincaré map,, Trans. Amer. Math. Soc., 362, 3591 (2010) · Zbl 1203.37086 · doi:10.1090/S0002-9947-10-05014-2
[9] I. A. García, Generalized Hopf bifurcation for planar vector fields via the inverse integrating factor,, J. Dynam. Differential Equations, 23, 251 (2011) · Zbl 1218.37065 · doi:10.1007/s10884-011-9209-2
[10] I. A. García, A new approach to center conditions for simple analytic monodromic singularities,, J. Differential Equations, 248, 363 (2010) · Zbl 1192.34039 · doi:10.1016/j.jde.2009.09.002
[11] I. A. García, A survey on the inverse integrating factor,, Qual. Theory Dyn. Syst., 9, 115 (2010) · Zbl 1364.34005 · doi:10.1007/s12346-010-0023-8
[12] H. Giacomini, On the nonexistence, existence and uniqueness of limit cycles,, Nonlinearity, 9, 501 (1996) · Zbl 0886.58087 · doi:10.1088/0951-7715/9/2/013
[13] J. Giné, Analytic integrability and characterization of centers for nilpotent singular points,, Z. Angew. Math. Phys., 55, 725 (2004) · Zbl 1069.34045 · doi:10.1007/s00033-004-1093-8
[14] J. Giné, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33, 4531 (2013) · Zbl 1282.34006 · doi:10.3934/dcds.2013.33.4531
[15] J. Giné, Existence of inverse integrating factors and Lie symmetries for degenerate planar centers,, J. Differential Equations, 252, 344 (2012) · Zbl 1298.34026 · doi:10.1016/j.jde.2011.08.044
[16] A. Goriely, <em>Integrability and Nonintegrability of Dynamical Systems</em>,, World Scientific (2001) · Zbl 1002.34001 · doi:10.1142/9789812811943
[17] J. Harnad, <em>Integrable Systems: From Classical to Quantum</em>,, American Mathematical Society (2000) · Zbl 0973.34075
[18] Y. Ilyashenko, <em>Lectures on Analytic Differential Equations</em>,, American Mathematical Society (2008) · Zbl 1186.34001
[19] J. Llibre, On the polynomial integrability of the Kirchoff equations,, Physica D, 241, 1417 (2012) · Zbl 1253.34005 · doi:10.1016/j.physd.2012.05.003
[20] J. Llibre, Analytic integrability of quadratic-linear polynomial differential systems,, Ergodic Theory Dynam. Systems, 31, 245 (2011) · Zbl 1213.37099 · doi:10.1017/S0143385709000868
[21] R. Narasimhan, <em>Analysis on Real and Complex Manifolds</em>,, North-Holland Mathematical Library 35, 35 (1985) · Zbl 0583.58001
[22] P. J. Olver, <em>Applications of Lie Groups to Differential Equations</em>, Graduate Texts in Mathematics <strong>107</strong>,, Springer-Verlag (1993) · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[23] D. Peralta-Salas, Period function and normalizers of vector fields in \(\mathbb R^n\) with \(n-1\) first integrals,, J. Differential Equations, 244, 1287 (2008) · Zbl 1159.34036 · doi:10.1016/j.jde.2008.01.002
[24] G. E. Prince, Comment on “Period function and normalizers of vector fields in \(\mathbb R^n\) with \(n-1\) first integrals” by D.Peralta-Salas [J.Differential Equations 244(6)(2008) 1287-1303],, J. Differential Equations, 246, 3750 (2009) · Zbl 1169.34324 · doi:10.1016/j.jde.2009.02.009
[25] S. I. Popov, On rational integrability of Euler equations on Lie algebra \(so(4,\mathbb C)\), revisited,, Physics Letter A, 373, 2445 (2009) · Zbl 1231.35159 · doi:10.1016/j.physleta.2009.04.075
[26] H. Poincaré, Sur l’intégration des équations différentielles du premier ordre et du premier degré I and II,, Rendiconti del Circolo Matematico di Palermo, 5, 161 (1891) · JFM 23.0319.01
[27] M. J. Prelle, Elementary first integrals of differential equations,, Trans. Amer. Math. Soc., 279, 215 (1983) · Zbl 0527.12016 · doi:10.1090/S0002-9947-1983-0704611-X
[28] S. Shi, Non-integrability of generalized Yang-Mills Hamiltonian system,, Discrete Contin. Dyn. Syst., 33, 1645 (2013) · Zbl 1262.70010 · doi:10.3934/dcds.2013.33.1645
[29] M. F. Singer, Liouvillian first integrals of differential equations,, Trans. Amer. Math. Soc., 333, 673 (1992) · Zbl 0756.12006 · doi:10.1090/S0002-9947-1992-1062869-X
[30] X. Zhang, Comment on “On the polynomial integrability of the Kirchoff equations, Physica D 241 (2012) 1417-1420”,, Physica D, 250, 47 (2013) · Zbl 1267.34005 · doi:10.1016/j.physd.2013.01.011
[31] X. Zhang, Analytic integrable systems: Analytic normalization and embedding flows,, J. Differential Equations, 254, 3000 (2013) · Zbl 1335.34072 · doi:10.1016/j.jde.2013.01.016
[32] X. Zhang, Inverse Jacobian multipliers and Hopf bifurcation on center manifolds,, J. Differential Equations, 256, 3278 (2014) · Zbl 1417.34089 · doi:10.1016/j.jde.2014.02.002
[33] X. Zhang, Liouvillian integrability of polynomial differential systems,, Trans. Amer. Math. Soc., 368, 607 (2016) · Zbl 1331.34006 · doi:10.1090/S0002-9947-2014-06387-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.