×

Analytic structure of one-loop coefficients. (English) Zbl 1342.81340

Summary: By the unitarity cut method, analytic expressions of one-loop coefficients have been given in spinor forms. In this paper, we present one-loop coefficients of various bases in Lorentz-invariant contraction forms of external momenta. Using these forms, the analytic structure of these coefficients becomes manifest. Firstly, coefficients of bases contain only second-type singularities while the first-type singularities are included inside scalar bases. Secondly, the highest degree of each singularity is correlated with the degree of the inner momentum in the numerator. Thirdly, the same singularities will appear in different coefficients, thus our explicit results could be used to provide a clear physical picture under various limits (such as soft or collinear limits) when combining contributions from all bases.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory

Software:

CutTools
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. Feng and M. Luo, An Introduction to On-shell Recursion Relations, arXiv:1111.5759 [INSPIRE].
[2] A. Brandhuber, B. Spence and G. Travaglini, Tree-Level Formalism, J. Phys.A 44 (2011) 454002 [arXiv:1103.3477] [INSPIRE]. · Zbl 1270.81206
[3] NLO Multileg Working Group collaboration, Z. Bern et al., The NLO multileg working group: summary report, arXiv:0803.0494 [INSPIRE].
[4] SM AND NLO MULTILEG and SM MC Working Groups collaboration, J. Alcaraz Maestre et al., The SM and NLO Multileg and SM MC Working Groups: summary Report, arXiv:1203.6803 [INSPIRE].
[5] SM and NLO Multileg Working Group collaboration, J. Andersen et al., The SM and NLO Multileg Working Group: summary report, arXiv:1003.1241 [INSPIRE].
[6] D.I. Olive, Exploration of S-Matrix Theory, Phys. Rev.135 (1964) B745.
[7] G.F. Chew, The Analytic S-Matrix: a Basis for Nuclear Democracy, W.A. Benjamin, Inc. (1966).
[8] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, Cambridge, U.K. (1966). · Zbl 0139.46204
[9] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE]. · Zbl 1207.81088
[10] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].
[11] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A Recursion relation for gravity amplitudes, Nucl. Phys.B 721 (2005) 98 [hep-th/0502146] [INSPIRE]. · Zbl 1128.81315
[12] F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [INSPIRE].
[13] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming Tree Amplitudes In General Relativity, JHEP11 (2007) 057 [hep-th/0702032] [INSPIRE]. · Zbl 1245.83012
[14] N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP04 (2008) 076 [arXiv:0801.2385] [INSPIRE]. · Zbl 1246.81103
[15] C. Cheung, On-Shell Recursion Relations for Generic Theories, JHEP03 (2010) 098 [arXiv:0808.0504] [INSPIRE]. · Zbl 1271.81102
[16] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE]. · Zbl 1105.81061
[17] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP09 (2004) 006 [hep-th/0403047] [INSPIRE].
[18] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [INSPIRE]. · Zbl 1342.81291
[19] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE]. · Zbl 1271.81098
[20] A. Hodges, The Box Integrals in Momentum-Twistor Geometry, arXiv:1004.3323 [INSPIRE]. · Zbl 1342.81190
[21] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A Note on Polytopes for Scattering Amplitudes, JHEP04 (2012) 081 [arXiv:1012.6030] [INSPIRE]. · Zbl 1348.81339
[22] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett.B 302 (1993) 299 [Erratum ibid.B 318 (1993) 649] [hep-ph/9212308] [INSPIRE]. · Zbl 1007.81512
[23] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE]. · Zbl 1007.81512
[24] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [INSPIRE].
[25] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [INSPIRE]. · Zbl 1192.81158
[26] G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J.C 35 (2004) 105 [hep-ph/0303184] [INSPIRE]. · Zbl 1191.81116
[27] G. Passarino and M. Veltman, One Loop Corrections for e+e−Annihilation Into μ+μ−in the Weinberg Model, Nucl. Phys.B 160 (1979) 151 [INSPIRE].
[28] W.L van Neerven and J.A.M Vermaseren, Large loop integrals, Phys. Lett.B 137 (1984) 241.
[29] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[30] R.K. Ellis, W. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [INSPIRE].
[31] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].
[32] S. Badger, Direct Extraction Of One Loop Rational Terms, JHEP01 (2009) 049 [arXiv:0806.4600] [INSPIRE]. · Zbl 1243.81219
[33] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[34] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
[35] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE]. · Zbl 1178.81202
[36] R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev.D 72 (2005) 065012 [hep-ph/0503132] [INSPIRE].
[37] R. Britto, B. Feng and P. Mastrolia, The Cut-constructible part of QCD amplitudes, Phys. Rev.D 73 (2006) 105004 [hep-ph/0602178] [INSPIRE].
[38] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].
[39] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and Reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [INSPIRE].
[40] R. Britto and B. Feng, Integral coefficients for one-loop amplitudes, JHEP02 (2008) 095 [arXiv:0711.4284] [INSPIRE].
[41] R. Britto, B. Feng and P. Mastrolia, Closed-Form Decomposition of One-Loop Massive Amplitudes, Phys. Rev.D 78 (2008) 025031 [arXiv:0803.1989] [INSPIRE].
[42] B. Feng and G. Yang, Unitarity Method with Spurious Pole, Nucl. Phys.B 811 (2009) 305 [arXiv:0806.4016] [INSPIRE]. · Zbl 1194.81317
[43] P. Mastrolia, Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys. Lett.B 678 (2009) 246 [arXiv:0905.2909] [INSPIRE].
[44] Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev.D 71 (2005) 105013 [hep-th/0501240] [INSPIRE].
[45] Z. Bern, L.J. Dixon and D.A. Kosower, The last of the finite loop amplitudes in QCD, Phys. Rev.D 72 (2005) 125003 [hep-ph/0505055] [INSPIRE].
[46] Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013 [hep-ph/0507005] [INSPIRE].
[47] Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys.B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].
[48] D.B. Fairlie, P.V. Landshoff, J. Nuttall and J.C. Polkinghorne, Singularities of the Second Type, J. Math. Phys.3 (1962) 594. · Zbl 0118.44502
[49] P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro and H. van Deurzen, The Integrand Reduction of One- and Two-Loop Scattering Amplitudes, PoS(LL2012)028 [arXiv:1209.5678] [INSPIRE]. · Zbl 1331.81218
[50] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division, arXiv:1209.4319 [INSPIRE]. · Zbl 1331.81218
[51] P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes, JHEP11 (2011) 014 [arXiv:1107.6041] [INSPIRE]. · Zbl 1306.81357
[52] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from Multivariate Polynomial Division, Phys. Lett.B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].
[53] S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes, JHEP04 (2012) 055 [arXiv:1202.2019] [INSPIRE]. · Zbl 1348.81340
[54] S. Badger, H. Frellesvig and Y. Zhang, An Integrand Reconstruction Method for Three-Loop Amplitudes, JHEP08 (2012) 065 [arXiv:1207.2976] [INSPIRE].
[55] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods, JHEP09 (2012) 042 [arXiv:1205.5707] [INSPIRE].
[56] J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals, Phys. Rev.D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
[57] D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev.D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].
[58] K.J. Larsen, Global Poles of the Two-Loop Six-Point N = 4 SYM integrand, Phys. Rev.D 86 (2012) 085032 [arXiv:1205.0297] [INSPIRE].
[59] S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP10 (2012) 026 [arXiv:1205.0801] [INSPIRE].
[60] F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung Processes in Gauge Theories, Phys. Lett.B 103 (1981) 124 [INSPIRE].
[61] P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in Gauge Theories at High-Energies. 1. General Formalism for Quantum Electrodynamics, Nucl. Phys.B 206 (1982) 53 [INSPIRE].
[62] R. Kleiss and W.J. Stirling, Spinor Techniques for Calculating \(p\overline{p}\to{{{{W^{\pm }}}} \left/ {Z0 } \right.} \)+ Jets, Nucl. Phys.B 262 (1985) 235 [INSPIRE].
[63] J. Gunion and Z. Kunszt, Improved Analytic Techniques for Tree Graph Calculations and the \(Ggq\overline{q}\) Lepton anti-Lepton Subprocess, Phys. Lett.B 161 (1985) 333 [INSPIRE].
[64] Z. Xu, D.-H. Zhang and L. Chang, Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].
[65] L.J. Dixon, Twistor string theory and QCD, PoS(HEP2005)405 [hep-ph/0512111] [INSPIRE].
[66] L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
[67] R. Britto, Loop Amplitudes in Gauge Theories: Modern Analytic Approaches, J. Phys.A 44 (2011) 454006 [arXiv:1012.4493] [INSPIRE]. · Zbl 1270.81132
[68] R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept.518 (2012) 141 [arXiv:1105.4319] [INSPIRE].
[69] R. Britto, B. Feng and G. Yang, Polynomial Structures in One-Loop Amplitudes, JHEP09 (2008) 089 [arXiv:0803.3147] [INSPIRE]. · Zbl 1245.81116
[70] F.A. Berends and W. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [INSPIRE].
[71] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop selfdual and N = 4 super Yang-Mills, Phys. Lett.B 394 (1997) 105 [hep-th/9611127] [INSPIRE].
[72] G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP10 (2010) 105 [arXiv:1008.2441] [INSPIRE]. · Zbl 1291.81389
[73] K. Risager, A Direct proof of the CSW rules, JHEP12 (2005) 003 [hep-th/0508206] [INSPIRE].
[74] R. Britto and E. Mirabella, External leg corrections in the unitarity method, JHEP01 (2012) 045 [arXiv:1109.5106] [INSPIRE]. · Zbl 1306.81328
[75] R. Britto and B. Feng, Solving for tadpole coefficients in one-loop amplitudes, Phys. Lett.B 681 (2009) 376 [arXiv:0904.2766] [INSPIRE].
[76] Z. Bern and A. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].
[77] S. Badger, Generalised Unitarity At One-Loop With Massive Fermions, Nucl. Phys. Proc. Suppl.183 (2008) 220 [arXiv:0807.1245] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.