×

Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. (English) Zbl 1337.65083

Summary: In this study, the numerical solution of Fredholm-Volterra integro-differential equations for two-point, second-order periodic boundary value problems is discussed in a reproducing kernel Hilbert space. A reproducing kernel Hilbert space is constructed, in which the periodic boundary conditions of the problem are satisfied. The exact solution \(u(x)\) is represented in the form of series in the space \(W_2^3\). In the mean time, the \(n\)-term approximate solution \(u_n(x)\) is obtained and is proved to converge to the exact solution \(u(x)\). Furthermore, we present an iterative method for obtaining the solution in the space \(W_2^3\). Some examples are displayed to demonstrate the validity and applicability of the proposed method. The numerical result indicates that the proposed method is straightforward to implement, efficient, and accurate for solving linear and nonlinear equations.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
45J05 Integro-ordinary differential equations
45B05 Fredholm integral equations
45D05 Volterra integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kanwal, R. P., Linear Integral Differential Equations: Theory and Technique (1996), Birkhauser: Birkhauser Boston, Georgia
[2] Bloom, F., Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory, J. Math. Anal. Appl., 73, 524-542 (1980) · Zbl 0434.45018
[3] Holmaker, K., Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM J. Math. Anal., 24, 116-128 (1993) · Zbl 0767.45005
[4] Forbes, L. K.; Crozier, S.; Doddrell, D. M., Calculating current densities and fields produced by shielded magnetic resonance imaging probes, SIAM J. Appl. Math., 57, 401-425 (1997) · Zbl 0871.65116
[5] Jerri, A. J., Introduction to Integral Equations with Applications (1999), John Wiley and Sons: John Wiley and Sons New York · Zbl 0938.45001
[6] Atici, F. M.; Guseinov, G. S., On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. Comput. Appl. Math., 132, 341-356 (2001) · Zbl 0993.34022
[7] Li, F.; Liang, Z., Existence of positive periodic solutions to nonlinear second-order differential equations, Appl. Math. Lett., 18, 1256-1264 (2005) · Zbl 1088.34038
[8] Agarwal, R. P.; Filippakis, M. E.; O’Regan, D.; Papageorgiou, N. S., Degree theoretic methods in the study of nonlinear periodic problems with nonsmooth potentials, Differ. Integral Equ., 19, 279-296 (2006) · Zbl 1212.34036
[9] Seda, V.; Nieto, J. J.; Gera, M., Periodic boundary value problem for nonlinear higher ordinary differential equations, Appl. Math. Comput., 48, 71-82 (1992) · Zbl 0748.34014
[10] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0411.60078
[11] Palencia, E. S., Non-Homogeneous Media and Vibration Theory (Lecture Notes in Physics) (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0432.70002
[12] Peng, S., Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 158, 345-351 (2004) · Zbl 1082.34510
[13] Liu, B.; Liu, L.; Wuc, Y., Existence of nontrivial periodic solutions for a nonlinear second order periodic boundary value problem, Nonlinear Anal., 72, 3337-3345 (2010) · Zbl 1190.34049
[14] Yao, Q., Positive solutions of nonlinear second-order periodic boundary value problems, Appl. Math. Lett., 20, 583-590 (2007) · Zbl 1131.34303
[15] Yu, H.; Pei, M., Solvability of a nonlinear third-order periodic boundary value problem, Appl. Math. Lett., 23, 892-896 (2010) · Zbl 1197.34031
[16] Lia, Y., Positive solutions of fourth-order periodic boundary value problems, Nonlinear Anal., 54, 1069-1078 (2003) · Zbl 1030.34025
[17] El-Ajou, A.; Abu Arqub, O.; Momani, S., Homotopy analysis method for second-order boundary value problems of integro-differential equations, Discrete Dyn. Nat. Soc., 2012 (2012), 18p (Article ID 365792) · Zbl 1248.65084
[18] Abu Arqub, O.; Al-Smadi, M.; Momani, S., Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integro-differential equations, Abstract Appl. Anal., 2012 (2012), 16p (Article ID 839836) · Zbl 1253.65200
[19] Abu Arqub, O.; Al-Smadi, M.; Shawagfeh, N., Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219, 8938-8948 (2013) · Zbl 1288.65181
[20] Al-Smadi, M.; Abu Arqub, O.; Momani, S., A computational method for two-point boundary value problems of fourth-order mixed integro-differential equations, Math. Prob. Eng., 2013 (2013), 10p (Article ID 832074) · Zbl 1299.65297
[21] Yulan, W.; Chaolu, T.; Jing, P., New algorithm for second-order boundary value problems of integro-differential equation, J. Comput. Appl. Math., 229, 1-6 (2009) · Zbl 1180.65180
[22] Abu Arqub, O.; Abo-Hammour, Z.; Momani, S.; Shawagfeh, N., Solving singular two-point boundary value problems using continuous genetic algorithm, Abstract Appl. Anal., 2012 (2012), 25p (Article ID 205391) · Zbl 1261.34018
[23] Abu Arqub, O.; Abo-Hammour, Z.; Momani, S., Application of continuous genetic algorithm for nonlinear system of second-order boundary value problems, Appl. Math. Inform. Sci., 8, 235-248 (2014)
[24] Berlinet, A.; Agnan, C. T., Reproducing Kernel Hilbert Space in Probability and Statistics (2004), Kluwer Academic Publishers · Zbl 1145.62002
[25] Cui, M.; Lin, Y., Nonlinear Numerical Analysis in the Reproducing Kernel Space (2008), Nova Science Publisher: Nova Science Publisher New York
[26] Daniel, A., Reproducing Kernel Spaces and Applications (2003), Springer · Zbl 1021.00005
[27] Yang, L. H.; Lin, Y., Reproducing kernel methods for solving linear initial-boundary-value problems, Electron. J. Differ. Equ., 2008, 1-11 (2008) · Zbl 1137.35328
[28] Geng, F., Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. Math. Comput., 215, 2095-2102 (2009) · Zbl 1178.65085
[29] Wang, W.; Cui, M.; Han, B., A new method for solving a class of singular two-point boundary value problems, Appl. Math. Comput., 206, 721-727 (2008) · Zbl 1161.65060
[30] Lin, Y.; Cui, M.; Yang, L., Representation of the exact solution for a kind of nonlinear partial differential equations, Appl. Math. Lett., 19, 808-813 (2006) · Zbl 1116.35309
[31] Jiang, W.; Chen, Z., Solving a system of linear Volterra integral equations using the new reproducing kernel method, Appl. Math. Comput., 219, 10225-10230 (2013) · Zbl 1293.65170
[32] Geng, F.; Cui, M., A reproducing kernel method for solving nonlocal fractional boundary value problems, Appl. Math. Lett., 25, 818-823 (2012) · Zbl 1242.65144
[33] Geng, F.; Qian, S. P., Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 26, 998-1004 (2013) · Zbl 1312.65121
[34] Shawagfeh, N.; Abu, O.; Arqub, S., Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method, J. Comput. Anal. Appl., 16, 750-762 (2014) · Zbl 1318.34036
[35] Jiang, W.; Chen, Z., A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation, Numer. Methods Part. Differ. Equ., 30, 289-300 (2014) · Zbl 1285.65065
[36] Geng, F.; Qian, S. P.; Li, S., A numerical method for singularly perturbed turning point problems with an interior layer, J. Comput. Appl. Math., 255, 97-105 (2014) · Zbl 1291.65231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.