×

Three-dimensional mixed convection flow of viscoelastic nanofluid over an exponentially stretching surface. (English) Zbl 1356.76029

Summary: Purpose{ } - The purpose of this paper is to investigate the three-dimensional mixed convection flow of viscoelastic nanofluid induced by an exponentially stretching surface. { }Design/methodology/approach{ } - Similarity transformations are utilized to reduce the partial differential equations into the ordinary differential equations. The corresponding non-linear problems are solved by homotopy analysis method. { }Findings{ } - The authors found that an increase in thermophoresis and Brownian motion parameter enhance the temperature. Here thermal conductivity of fluid is enhanced due to which higher temperature and thicker thermal boundary layer thickness is obtained. { }Practical implications{ } - Heat and mass transfer effects in mixed convection flow over a stretching surface have numerous applications in the polymer technology and metallurgy. Such flows are encountered in metallurgical processes which involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid and that in the process of drawing, these strips are sometimes stretched. { }Originality/value{ } - Three-dimensional flows over an exponentially stretching surface are very rare in the literature. Three-dimensional flow of viscoelastic nanofluid due to an exponentially stretching surface is first time investigated.

MSC:

76A10 Viscoelastic fluids
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbasbandy, S. , Ghehsareh, H.R. and Hashim, I. (2012), ”An approximate solution of the MHD flow over a non-linearly stretching sheet by rational chebyshev collocation method”, UPB Scientific Bulletin, Series A , Vol. 74 No. 4, pp. 47-58. · Zbl 1299.76175
[2] Abbasbandy, S. , Hashemi, M.S. and Hashim, I. (2013), ”On convergence of homotopy analysis method and its application to fractional integro-differential equations”, Quaestiones Mathematicae , Vol. 36 No. 1, pp. 93-105. , · Zbl 1274.65229 · doi:10.1108/HFF-01-2014-0024
[3] Al-Odat, M.Q. , Damesh, R.A. and Al-Azab, T.A. (2006), ”Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field”, International Journal of Applied Mechanics and Engineering , Vol. 11 No. 2, pp. 289-299. · Zbl 1195.76425
[4] Alsaedi, A. , Awais, M. and Hayat, T. (2012), ”Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions”, Communications in Nonlinear Science and Numerical Simulation , Vol. 17 No. 11, pp. 4210-4223. , · Zbl 1263.80005 · doi:10.1108/HFF-01-2014-0024
[5] Bég, O.A. , Rashidi, M.M. , Bég, T.A. and Asadi, M. (2012), ”Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeez film in a porous medium: a model for magneto-bio-rheological lubrication”, Journal of Mechanics in Medicine and Biology , Vol. 12 No. 3, p. 1250051. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[6] Bhattacharyya, K. (2011), ”Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet”, International Communications in Heat and Mass Transfer , Vol. 38 No. 7, pp. 917-922. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[7] Bhattacharyya, K. , Uddin, M.S. , Layek, G.C. and Malek, M.A. (2010), ”Effect of chemically reactive solute diffusion on boundary layer flow past a stretching surface with suction or blowing”, Journal of Mathematics and Mathematical Sciences , Vol. 25, pp. 41-48.
[8] Cortell, R. (2007), ”Viscous flow and heat transfer over a nonlinearly stretching sheet”, Applied Mathematics and Computation , Vol. 184 No. 2, pp. 864-873. , · Zbl 1112.76022 · doi:10.1108/HFF-01-2014-0024
[9] Crane, L.J. (1970), ”Flow past a stretching plate”, Z Angew Math Phys , Vol. 21 No. 4, pp. 645-647. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[10] Elbashbeshy, E.M.A. (2001), ”Heat transfer over an exponentially stretching continuous surface with suction”, Archive of Mechanics , Vol. 53 No. 6, pp. 643-651. · Zbl 0999.76041
[11] Hassan, H.N. and Rashidi, M.M. (2014), ”An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 24 No. 2, pp. 419-437. , · Zbl 1356.76231 · doi:10.1108/HFF-01-2014-0024
[12] Gupta, P.S. and Gupta, A.S. (1977), ”Heat and mass transfer on a stretching sheet with suction or blowing”, Canadian Journal of Chemical Engineering , Vol. 55 No. 6, pp. 744-746. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[13] Hayat, T. , Javed, T. and Abbas, Z. (2009), ”MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface”, Nonlinear Analysis and Real World Applications , Vol. 10 No. 3, pp. 1514-1526. , · Zbl 1160.76055 · doi:10.1108/HFF-01-2014-0024
[14] Hayat, T. , Shehzad, S.A. and Alsaedi, A. (2014), ”MHD three dimensional flow by an exponentially stretching surface with convective boundary condition”, Journal of Aerospace Engineering , Vol. 27 No. 4, p. 04014011. , · Zbl 1356.76431 · doi:10.1108/HFF-01-2014-0024
[15] Hayat, T. , Shehzad, S.A. , Al-Sulami, H.H. and Asghar, S. (2013a), ”Influence of thermal stratification on the radiative flow of Maxwell fluid”, Journal of the Brazilian Society of Mechanical Sciences and Engineering , Vol. 35 No. 4, pp. 381-389. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[16] Hayat, T. , Shehzad, S.A. , Ashraf, M.B. and Alsaedi, A. (2013b), ”Magnetohydrodynamic mixed convection flow of thixotropic fluid with thermophoresis and Joule heating”, Journal of Thermophysics and Heat Transfer , Vol. 27 No. 4, pp. 733-740. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[17] Liu, I.C. , Wang, H.H. and Peng, Y.F. (2013a), ”Flow and heat transfer for three dimensional flow over an exponentially stretching surface”, Chemical Engineering Communications , Vol. 200 No. 2, pp. 253-268. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[18] Liu, Y.P. , Liao, S.J. and Li, Z.B. (2013b), ”Symbolic computation of strongly nonlinear periodic oscillations”, Journal of Symbolic Computations , Vol. 55, pp. 72-95. , · Zbl 1325.68292 · doi:10.1108/HFF-01-2014-0024
[19] Makinde, O.D. and Aziz, A. (2011), ”Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, International Journal of Thermal Sciences , Vol. 50 No. 7, pp. 1326-1332. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[20] Mukhopadhyay, S. (2010), ”Effects of slip on unsteady mixed convective flow and heat transfer past a stretching surface”, Chinese Physics Letters , Vol. 12 No. 12, p. 124401. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[21] Mukhopadhyay, S. (2013), ”Casson fluid flow and heat transfer over a nonlinearly stretching surface”, Chinese Physics B , Vol. 22 No. 7, p. 074701. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[22] Mustafa, M. , Hayat, T. and Alsaedi, A. (2013), ”Unsteady boundary layer flow of nanofluid past an impulsively stretching sheet”, Journal of Mechanics , Vol. 29 No. 3, pp. 423-432. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[23] Nadeem, S. and Lee, C. (2012), ”Boundary layer flow of nanofluid over an exponentially stretching surface”, Nanoscale Research Letters , Vol. 7, p. 94. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[24] Ramzan, M. , Farooq, M. , Alsaedi, A. and Hayat, T. (2013), ”MHD three-dimensional flow of couple stress fluid with Newtonian heating”, European Physical Journal Plus , Vol. 128, p. 49. · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[25] Rashidi, M.M. and Pour, S.A.M. (2010), ”Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method”, Nonlinear Analysis: Modelling and Control , Vol. 15 No. 1, pp. 83-95. · Zbl 1217.34023
[26] Rashidi, M.M. , Abelman, S. and Mehr, N.F. (2013), ”Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid”, International Journal of Heat and Mass Transfer , Vol. 62, pp. 515-525. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[27] Rashidi, M.M. , Rajvanshi, S.C. and Keimanesh, M. (2012a), ”Study of pulsatile flow in a porous annulus with the homotopy analysis method”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 22 No. 4, pp. 971-989. , · Zbl 1356.76254 · doi:10.1108/HFF-01-2014-0024
[28] Rashidi, M.M. , Pour, S.A.M. , Hayat, T. and Obaidat, S. (2012b), ”Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method”, Computers & Fluids , Vol. 54, pp. 1-9. , · Zbl 1291.76338 · doi:10.1108/HFF-01-2014-0024
[29] Rashidi, M.M. , Rastegari, M.T. , Asadi, M. and Bég, O.A. (2012c), ”A study of non-Newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method”, Chemical Engineering Communications , Vol. 199 No. 2, pp. 231-256. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[30] Rashidi, M.M. , Bég, O.A. , Mehr, N.F. , Hosseini, A. and Gorla, R.S.R. (2012d), ”Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer over a vertical cylinder”, Theoretical and Applied Mechanics , Vol. 39 No. 8, pp. 365-390. · Zbl 1299.76058 · doi:10.1108/HFF-01-2014-0024
[31] Rashidi, M.M. , Mehr, N.F. , Hosseini, A. , Bég, O.A. and Hung, T.K. (2014), ”Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration”, Meccanica , Vol. 49 No. 2, pp. 469-482. , · Zbl 1361.76024 · doi:10.1108/HFF-01-2014-0024
[32] Sajid, M. and Hayat, T. (2008), ”Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet”, International Communications in Heat and Mass Transfer , Vol. 35 No. 7, pp. 347-356. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[33] Shehzad, S.A. , Qasim, M. , Alsaedi, A. , Hayat, T. and Alhothuali, M.S. (2013), ”Combined thermal stratified and thermal radiation effects in mixed-convection flow of a thixotropic fluid”, European Physical Journal Plus , Vol. 128, p. 7. · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[34] Sheikholeslami, M. , Bandpy, M.G. and Domairry, G. (2013), ”Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM)”, Applied Mathematics and Mechanics-English Edition , Vol. 34 No. 7, pp. 833-846. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[35] Sheikholeslami, M.M. and Ganji, D.D. (2013), ”Heat transfer of Cu-water nanofluid flow between parallel plates”, Powder Technology , Vol. 235, pp. 873-879. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[36] Turkyilmazoglu, M. (2012), ”Solution of Thomas-Fermi equation with a convergent approach”, Communications in Nonlinear Science and Numerical Simulation , Vol. 17 No. 11, pp. 4097-4103. , · Zbl 1316.34020 · doi:10.1108/HFF-01-2014-0024
[37] Turkyilmazoglu, M. (2013a), ”The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface”, International Journal of Mechanical Sciences , Vol. 77, pp. 263-268. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[38] Turkyilmazoglu, M. (2013b), ”Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer”, Journal of Heat Transfer , Vol. 136, p. 031704. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[39] Turkyilmazoglu, M. and Pop, I. (2013), ”Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid”, International Journal of Heat and Mass Transfer , Vol. 57 No. 1, pp. 82-88. , · Zbl 1356.76029 · doi:10.1108/HFF-01-2014-0024
[40] Vajravelu, K. and Roper, T. (1999), ”Flow and heat transfer in a second grade fluid over a stretching sheet”, International Journal of Non-Linear Mechanics , Vol. 34 No. 6, pp. 1031-1036. , · Zbl 1006.76005 · doi:10.1108/HFF-01-2014-0024
[41] Zheng, L. , Niu, J. , Zhang, X. and Gao, Y. (2012), ”MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump”, Mathematical and Computer Modelling , Vol. 56 Nos 5/6, pp. 133-144. , · Zbl 1255.76154 · doi:10.1108/HFF-01-2014-0024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.