×

Decay of scalar variance in isotropic turbulence in a bounded domain. (English) Zbl 1273.76125

Summary: The decay of scalar variance in isotropic turbulence in a bounded domain is investigated. Extending the study of H. Touil, the third and the fourth author [J. Turbul. 3, Paper No. 49, 12 p., electronic only (2002; Zbl 1082.76566)], to the case of a passive scalar, the effect of the finite size of the domain on the lengthscales of turbulent eddies and scalar structures is studied by truncating the infrared range of the wavenumber spectra. Analytical arguments based on a simple model for the spectral distributions show that the decay exponent for the variance of scalar fluctuations is proportional to the ratio of the Kolmogorov constant to the Corrsin-Obukhov constant. This result is verified by closure calculations in which the Corrsin-Obukhov constant is artificially varied. Large-eddy simulations provide support for the results and give an estimation of the value of the decay exponent and of the scalar-to-velocity time scale ratio.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76F55 Statistical turbulence modeling

Citations:

Zbl 1082.76566
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Tennekes H., A First Course in Turbulence (1972)
[2] DOI: 10.1063/1.870447 · Zbl 1184.76513 · doi:10.1063/1.870447
[3] Bertoglio J. P., A simplified spectral closure for inhomogeneous turbulence (1986)
[4] Touil H., Journal of Turbulence 3 (049) pp 1– (2002)
[5] DOI: 10.1063/1.1582859 · Zbl 1186.76062 · doi:10.1063/1.1582859
[6] DOI: 10.1017/S0022112066000338 · doi:10.1017/S0022112066000338
[7] Lesieur M., Journal de Mécanique 17 pp 609– (1978)
[8] DOI: 10.1063/1.858773 · Zbl 0790.76038 · doi:10.1063/1.858773
[9] DOI: 10.2514/8.1982 · doi:10.2514/8.1982
[10] DOI: 10.1017/S0022112078002335 · doi:10.1017/S0022112078002335
[11] Ristorcelli J. R., Physics of Fluids 18 (075101) pp 1– (2006) · Zbl 1185.76699
[12] DOI: 10.1007/978-94-009-0533-7 · doi:10.1007/978-94-009-0533-7
[13] DOI: 10.1017/S0022112082002560 · Zbl 0504.76059 · doi:10.1017/S0022112082002560
[14] DOI: 10.1063/1.868826 · Zbl 1023.76551 · doi:10.1063/1.868826
[15] DOI: 10.1017/S0022112070000642 · Zbl 0191.25601 · doi:10.1017/S0022112070000642
[16] DOI: 10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2 · doi:10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2
[17] Vignon J. M., Comptes Rendus de l’Académie des Sciences B Physique 288 pp 335– (1979)
[18] DOI: 10.1063/1.862882 · doi:10.1063/1.862882
[19] DOI: 10.1063/1.1761271 · doi:10.1063/1.1761271
[20] Hinze J. O., Turbulence (1975)
[21] DOI: 10.1063/1.1762911 · Zbl 1186.76118 · doi:10.1063/1.1762911
[22] Shao L., Advances in Turbulence X, Trondheim 2004 pp 862– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.