×

Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. (English) Zbl 1293.74130

Summary: The buckling behavior of perfect and defective double-walled carbon nanotubes (DWCNTs) under axial compressive, torsional and bending loadings is investigated using a structural mechanics model. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element.
Critical buckling loads, critical buckling moments and the effects of vacancy defects were studied for armchair nanotubes with various aspect ratios. The results show that vacancy defects greatly reduce the critical buckling load of DWCNTs. The density of defects plays an important role in buckling of DWCNTs. The results of this numerical model are in good agreement with their comparable existing works.

MSC:

74G60 Bifurcation and buckling
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56-58 · doi:10.1038/354056a0
[2] Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, San Diego
[3] Che J, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11(2):65-69 · doi:10.1088/0957-4484/11/2/305
[4] Nardelli MB, Fattebert JL, Orlikowski D, Roland C, Zhao Q, Bernholc J (2000) Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38(11):1703-1711 · doi:10.1016/S0008-6223(99)00291-2
[5] Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899-1912 · doi:10.1016/S0266-3538(01)00094-X
[6] Pantano A, Parks MD, Boyce MC (2003) Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys Rev Lett 91(14):145504 · doi:10.1103/PhysRevLett.91.145504
[7] Pantano A, Parks MD, Boyce MC (2004) Mechanics of deformation of single-and multi-wall carbon nanotubes. J Mech Phys Solids 52(4):789-821 · Zbl 1106.74376 · doi:10.1016/j.jmps.2003.08.004
[8] Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91(21):215505 · doi:10.1103/PhysRevLett.91.215505
[9] Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys Rev B 69(11):115415, 12 pp · doi:10.1103/PhysRevB.69.115415
[10] Arroyo M, Belytschko T (2005) Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4):455-469 · Zbl 1106.74006 · doi:10.1007/s11012-005-2133-y
[11] Yao X, Han Q (2007) Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field. Compos Sci Technol 67(1):125-134 · doi:10.1016/j.compscitech.2006.03.021
[12] Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517-1524 · doi:10.1016/S0266-3538(03)00072-1
[13] Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Composites. Part B 36(5):468-477 · doi:10.1016/j.compositesb.2004.10.003
[14] Hu N, Fukunaga H, Lu C, Kameyama M, Yan B (2005) Prediction of elastic properties of carbon nanotube reinforced composites. Proc R Soc A, Math Phys Eng Sci 461(2058):1685-1710 · doi:10.1098/rspa.2004.1422
[15] Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP, Ghasemi-Nejhad MN (2006) Analytical and numerical techniques to predict carbon nanotubes properties. Int J Solids Struct 43(22):6832-6854 · Zbl 1120.74721 · doi:10.1016/j.ijsolstr.2006.02.009
[16] Wang Q (2005) Effect of the van der Waals interaction on analysis of double-walled carbon nanotubes. Int J Struct Stab Dyn 5(3):457-474 · doi:10.1142/S0219455405001635
[17] Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45(1):43-51 · Zbl 1184.74052 · doi:10.1007/s11012-009-9222-2
[18] Meo M, Rossi M (2006) Tensile failure prediction of single wall carbon nanotube. Eng Fract Mech 73(17):2589-2599 · Zbl 1445.62216 · doi:10.1016/j.engfracmech.2006.05.005
[19] Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42:39-45 · doi:10.1016/j.carbon.2003.09.011
[20] Wang CM, Ma YQ, Zhang YY, Ang KK (2006) Buckling of double-walled carbon nanotubes modeled by solid shell elements. J Appl Phys 99(11):114317 · doi:10.1063/1.2202108
[21] Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Constitutive modeling of nanotube-reinforced polymer composites. NASA/TM, 211454
[22] Zhang YY, Wang CM, Tan VBC (2006) Buckling of multiwalled carbon nanotubes using Timoshenko beam theory. J Eng Mech 132(9):952-958
[23] Elishakoff I, Pentaras D, Dujat K, Versaci C, Muscolino G et al. (2012) Carbon nanotubes and nanosensors: vibrations, buckling and ballistic impact (ISTE). Wiley, New York · doi:10.1002/9781118562000
[24] Sun CQ, Liu KX, Hong YS (2012) Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions. Acta Mech Sin 28:83-90 · Zbl 1288.74026 · doi:10.1007/s10409-011-0546-5
[25] Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 73(8):805410, 12 pp · doi:10.1103/PhysRevB.73.085410
[26] Liew KM, Wong CH, He XQ, Tan MJ, Meguid SA (2004) Nanomechanics of single and multiwalled carbon nanotubes. Phys Rev B 69(11):115429 · doi:10.1103/PhysRevB.69.115429
[27] Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458-9471 · doi:10.1103/PhysRevB.42.9458
[28] Lu JM, Hwang CC, Kuo QY, Wang YC (2008) Mechanical buckling of multi-walled carbon nanotubes: the effects of slenderness ratio. Physica E 40(5):1305-1308 · doi:10.1016/j.physe.2007.08.120
[29] Zhang YY, Tan VBC, Wang CM (2007) Effect of strain rate on the buckling behavior of single-and double-walled carbon nanotubes. Carbon 45(3):514-523 · doi:10.1016/j.carbon.2006.10.020
[30] Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60. Chem Phys Lett 128(5):501-503 · doi:10.1016/0009-2614(86)80661-3
[31] Xin H, Han Q, Yao XH (2007) Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 45(13):2486-2495 · doi:10.1016/j.carbon.2007.08.037
[32] Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K, Kaski K (2005) Erratum: mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 71(16):169906 · doi:10.1103/PhysRevB.71.169906
[33] Xin H, Han Q, Yao XH (2008) Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol 68(7):1809-1819
[34] Lu YJ, Wang X (2006) Combined torsional buckling of multi-walled carbon nanotubes. J Phys D, Appl Phys 39(15):3380-3387 · doi:10.1088/0022-3727/39/15/024
[35] Wang CM, Tay ZY, Chowdhuary ANR, Duan WH, Zhang YY, Silvestre N (2011) Examination of cylindrical shell theories for buckling of carbon nanotubes. Int J Struct Stab Dyn 11(06):1035-1058 · doi:10.1142/S0219455411004464
[36] Wang Q, Quek ST, Varadan VK (2007) Torsional buckling of carbon nanotubes. Phys Lett A 367(1):135-139 · doi:10.1016/j.physleta.2007.02.099
[37] Yao X, Han Q (2008) A continuum mechanics nonlinear postbuckling analysis for single-walled carbon nanotubes under torque. Eur J Mech A, Solids 27(5):796-807 · Zbl 1146.74020 · doi:10.1016/j.euromechsol.2007.11.012
[38] Yao X, Han Q (2008) Torsional buckling and postbuckling equilibrium path of double-walled carbon nanotubes. Compos Sci Technol 68(1):113-120 · doi:10.1016/j.compscitech.2007.05.025
[39] Wang Q (2008) Modeling of the mechanical instability of carbon nanotubes. Carbon 46(2):1159-1174
[40] Wang X, Wang XY, Xiao J (2005) A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct 69(3):315-321 · doi:10.1016/j.compstruct.2004.07.009
[41] Yao X, Han Q, Xin H (2008) Bending buckling behaviors of single-and multi-walled carbon nanotubes. Compos Mater Sci 43(4):579-590 · doi:10.1016/j.commatsci.2007.12.019
[42] Parvaneh V, Shariati M, Majd Sabeti AM (2009) Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach. Eur J Mech A, Solids 28(6):1072-1078 · Zbl 1176.74071 · doi:10.1016/j.euromechsol.2009.05.007
[43] Cornell WD, Cieplak P, Bayly CI et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179-5197 · doi:10.1021/ja00124a002
[44] Parvaneh V, Shariati M (2011) Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech 216(1):281-289 · Zbl 1398.74267 · doi:10.1007/s00707-010-0373-y
[45] Parvaneh V, Shariati M, Torabi H (2011) Frequency analysis of perfect and defective SWCNTs. Compos Mater Sci 50(7):2051-2056 · doi:10.1016/j.commatsci.2011.02.007
[46] Parvaneh V, Shariati M, Torabi H, Majd Sabeti AM (2011) Influence of boundary conditions and defects on the buckling behavior of SWCNTs via a structural mechanics approach. J Nanomater 16:297902
[47] Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, New York
[48] Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105(41):9980-9987 · doi:10.1021/jp011344u
[49] Li C, Chou TW (2004) Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech Mater 36(11):1047-1055 · doi:10.1016/j.mechmat.2003.08.009
[50] Lashkari Zadeh A, Shariati M, Torabi H (2012) Buckling analysis of carbon nanotube bundles under axial compressive, bending and torsional loadings via a structural mechanics model. J Phys Chem Solids 73(11):1282-1289 · doi:10.1016/j.jpcs.2012.06.014
[51] Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971-1975 · doi:10.1126/science.277.5334.1971
[52] Salvetat JP, Briggs AD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82(5):944-947 · doi:10.1103/PhysRevLett.82.944
[53] Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20:395707-395715 · doi:10.1088/0957-4484/20/39/395707
[54] He XQ, Kitipornchai S, Liew KM (2005) Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J Mech Phys Solids 53(2):303-326 · Zbl 1162.74354 · doi:10.1016/j.jmps.2004.08.003
[55] Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52:2521-2527 · doi:10.1016/j.actamat.2004.01.043
[56] Soong SH (2009) Torsional buckling of double-walled carbon nanotubes. In: 14 NUROP congress, National University of Singapore Kent Ridge, Singapore
[57] Yang SH, Wei ZX (2009) Molecular dynamics study of effects of sp3 interwall bridging upon torsional behavior of double-walled carbon nanotube. Phys Lett A 373(6):682-685 · doi:10.1016/j.physleta.2008.12.041
[58] Brazier LG (1927) On the flexure of thin cylindrical shells and other “thin” sections. Proc R Soc Lond Ser A 116(773):104-114 · JFM 53.0758.03 · doi:10.1098/rspa.1927.0125
[59] Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511-2514 · doi:10.1103/PhysRevLett.76.2511
[60] Parvaneh V, Shariati M, Torabi H (2012) Bending buckling behavior of perfect and defective single-walled carbon nanotubes via a structural mechanics model. Acta Mech 223(11):2369-2378 · Zbl 1307.74036 · doi:10.1007/s00707-012-0711-3
[61] Cao G, Chen X (2006) Buckling behaviour of single-walled carbon nanotubes and a targeted molecular mechanics approach. Phys Rev B 74(16):165422 · doi:10.1103/PhysRevB.74.165422
[62] Silvestre N (2008) Length dependence of critical measures in single-walled carbon nanotubes. Int J Solids Struct 45(18):4902-4920 · Zbl 1169.74409 · doi:10.1016/j.ijsolstr.2008.04.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.