×

Multiphase and multiphysics particle in cell simulation of soot deposition inside a diesel particulate filter single channel. (English) Zbl 1419.76626

Summary: In the diesel particulate filters technology a key aspect is represented by the properties of the particulate matter that is collected inside their structure. The work presented is focused on the development of an innovative mathematical tool based on the particle-in-cell method (PIC) for the simulation of the soot distribution inside a single channel of a diesel particulate filter. The basic fluid dynamic equations are solved for the gas phase inside the channel using a novel technique based on the solution of the same set of equations everywhere in the system including the porous medium. This approach is presented as alternative to the more conventional methods of matching conditions across the boundary of the porous region where a Darcy-like flow is developed. The motion of the soot solid particles is instead described through a particle-by-particle approach based on Newton’s equations of motion. The coupling between the dynamics of the gas and that of the soot particles, i.e. between these two sub-models, is performed through the implementation of the particle-in-cell technique. This model allows the detailed simulation of the deposition and compaction of the soot inside the filter channels and its characterization in terms of density, permeability and thickness. The model then represents a unique tool for the optimization of the design of diesel particulate filters. The details of the technique implementation and some paradigmatic examples will be shown.

MSC:

76S05 Flows in porous media; filtration; seepage
76T15 Dusty-gas two-phase flows
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Heck, R. M.; Farrauto, R., Catalytic Air Pollution Control (2002), Pergamon Press: Pergamon Press Oxford
[2] M. Masoudi, SAE Tech. Pap. Ser. 2002-01-1016.; M. Masoudi, SAE Tech. Pap. Ser. 2002-01-1016.
[3] A.G. Konstandopoulos, M. Kostoglou, N. Vlachos, E. Kladopoulou, SAE Tech. Pap. Ser. 2005-01-0946.; A.G. Konstandopoulos, M. Kostoglou, N. Vlachos, E. Kladopoulou, SAE Tech. Pap. Ser. 2005-01-0946.
[4] Bissett, E. J., AIChE J., 39, 1233 (1984)
[5] F. Piscaglia, C.J. Rutland, D.E. Foster, SAE Tech. Pap. Ser. 2005-01-0963.; F. Piscaglia, C.J. Rutland, D.E. Foster, SAE Tech. Pap. Ser. 2005-01-0963.
[6] Chen, S.; Dolen, G., Annu. Rev. Fluid Mech., 30, 329 (1998)
[7] N. Singh, C.J. Rutland, D.E. Foster, K. Narayanaswamy, Y. He, SAE Tech. Pap. Ser. 2009-01-1275.; N. Singh, C.J. Rutland, D.E. Foster, K. Narayanaswamy, Y. He, SAE Tech. Pap. Ser. 2009-01-1275.
[8] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1988), A. Hilger: A. Hilger Bristol · Zbl 0662.76002
[9] A.G. Konstandopoulos, M. Kostoglou, E. Skaperdas, E. Papaioannou, D. Zarvalis, E. Kladopoulou, SAE Tech. Pap. Ser. 2000-01-1016.; A.G. Konstandopoulos, M. Kostoglou, E. Skaperdas, E. Papaioannou, D. Zarvalis, E. Kladopoulou, SAE Tech. Pap. Ser. 2000-01-1016.
[10] Landau, L. D.; Lifshitz, M., Fluid Mechanics (1959), Pergamon Press: Pergamon Press Oxford
[11] Lapenta, G.; Brackbill, J. U., IEEE Trans. Plasma Sci., 24, 105 (1996)
[12] Peskin, C. S.; Printz, B. F., J. Comput. Phys., 105, 33 (1993)
[13] Sbrizzai, F.; Faraldi, P.; Soldati, A., Chem. Eng. Sci., 60, 6551 (2005)
[14] Hinds, W. C., Aerosol Technology (1982), John Wiley and Sons: John Wiley and Sons New York
[15] Li, A.; Ahmadi, G., Int. J. Eng. Sci., 31, 435 (1993)
[16] A.G. Konstandopoulos, E. Skaperdas, M. Masoudi, SAE Tech. Pap. Ser. 2002-01-1015.; A.G. Konstandopoulos, E. Skaperdas, M. Masoudi, SAE Tech. Pap. Ser. 2002-01-1015.
[17] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations (1989), CRC Press: CRC Press Boca Raton, FL · Zbl 0681.65064
[18] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations (1995), SIAM: SIAM Philadelphia · Zbl 0832.65046
[19] Saad, Y.; Schultz, M., SIAM J. Sci. Statist. Comput., 7, 856 (1986)
[20] Roache, P. J., Computational Fluid Dynamics (1972), Hermosa Publishers: Hermosa Publishers Albuquerque, NM · Zbl 0251.76002
[21] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2000), Springer: Springer New York · Zbl 0943.65001
[22] De Boor, C., A Practical Guide to Splines (1978), Springer Verlag: Springer Verlag New York · Zbl 0406.41003
[23] Tassopoulos, M.; O’Brein, J. A.; Rosner, D. E., AIChE J., 35, 980 (1989)
[24] A.G. Konstandopoulos, J.H. Johnson, SAE Tech. Pap. Ser. 890405.; A.G. Konstandopoulos, J.H. Johnson, SAE Tech. Pap. Ser. 890405.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.