×

Analysis and optimization of weakly coupled thermoelastoplastic systems with applications to weldment design. (English) Zbl 0823.73047

Summary: A systematic approach to the design of weakly coupled thermoelastoplastic systems is presented. The Newton-Raphson iteration method is used in the solution process so that analytic design sensitivity formulations may be efficiently derived via the direct differentiation technique. The derived formulations are suitable for finite element implementations. Analysis and sensitivity analysis capabilities are combined with numerical optimization to form an optimum design algorithm. To demonstrate the algorithm, we optimally design a weldment with respect to manufacturing and service life aspects.

MSC:

74P99 Optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74B99 Elastic materials
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

DOT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, Trans. ASME 107 pp 334– (1985)
[2] Belegundu, Comput. Methods Appl. Mech. Eng. 66 pp 87– (1988)
[3] Rajan, AIAA J. 27 pp 102– (1988)
[4] Venkayya, Int. j. numer. methods eng. 13 pp 203– (1978)
[5] and , Design Sensitivity Analysis of Structural Sytems, Academic Press, New York, 1986.
[6] Mroz, J. Struct. Mech. 13 pp 245– (1985) · doi:10.1080/03601218508907500
[7] Haftka, AIAA J. 24 pp 1187– (1986)
[8] Choi, Int. j. numer. methods eng. 24 pp 2039– (1987)
[9] Wu, AIAA J. 25 pp 1118– (1987)
[10] Santos, Int. j. numer. methods eng. 26 pp 2097– (1988)
[11] Szefer, Arch. Mech. 39 pp 247– (1987)
[12] Cardoso, AIAA J. 26 pp 595– (1988)
[13] Gopalakrishna, Comput. Struct. 30 pp 1263– (1988)
[14] Phelan, Int. j. numer. methods eng. 31 pp 1649– (1991)
[15] Tortorelli, Int. j. numer. methods eng. 33 pp 1643– (1992)
[16] Michaleris, Int. j. numer. methods eng. 37 pp 2471– (1994)
[17] Bendsoe, Eng. Optim. 11 pp 31– (1987)
[18] Bendsoe, Mech. Struct. Mach. 16 pp 81– (1988)
[19] Tsay, Comput. Methods Appl. Mech. Eng. 81 pp 183– (1990)
[20] Tsay, Comput. Methods Appl. Mech. Eng. 81 pp 209– (1990)
[21] Zhang, Int. j. numer. methods eng. 34 pp 947– (1992)
[22] and , ’Incremental finite element analysis of nonlinear structural design sensitivity problems’, in and , (eds.), Finite Elements in the 90’s, Barcelona, Springer-Verlag/CIMNE, 1991, pp. 241-247.
[23] Vidal, Comput. Methods Appl. Mech. Eng. 107 pp 393– (1993)
[24] , , and , ’Design sensitivity analysis of nonlinear structures–I: Large-deformation hyperelasticity and history-dependent material response’, in (ed.), Structural Optimization: State and Promise, AIAA Progress in Astronautics and Aeronautics series, 1993, pp. 369-406.
[25] Meric, Int. j. numer. methods eng. 14 pp 1851– (1979)
[26] Haftka, Int. j. numer. methods eng. 17 pp 71– (1981)
[27] Dems, J. Thermal Stresses 9 pp 303– (1986)
[28] Dems, J. Thermal Stress 10 pp 1– (1986)
[29] Meric, Int. j. numer. methods eng. 26 pp 109– (1988)
[30] Tortorelli, Int. j. numer. methods eng. 28 pp 733– (1989)
[31] Tortorelli, Comput. Methods Appl. Mech. Eng. 77 pp 61– (1989)
[32] Tortorelli, Comput. Methods Appl. Mech. Eng. 113 pp 141– (1994)
[33] Tortorelli, Comput. Methods Appl. Mech. Eng. 113 pp 157– (1994)
[34] Tortorelli, Comput. Methods Appl. Mech. Eng. 75 pp 61– (1990)
[35] Dems, J. Thermal Stress 10 pp 283– (1987)
[36] Tortorelli, Int. J. Solids Struct. 27 pp 1477– (1991)
[37] Yang, Comput. Methods Appl. Mech. Eng. 102 pp 41– (1993)
[38] Meric, Int. J. Eng. Sci. 26 pp 703– (1988)
[39] Tortorelli, AIAA J. 29 pp 253– (1991)
[40] ’Design sensitivity analysis for coupled systems and their application to concurrent engineering’, in NATO-ARMY-NASA Advanced Study Institute for Concurrent Engineering Tools and Technologies for Mechanical System Design, Iowa City, IA, 1992.
[41] Residual Welding Stresses, Almqvist and Wiksell, Stockholm, 1955.
[42] The Metallurgy of Welding Brazing and Soldering, Modern Metallurgical Texts, George Allen and Unwin LTD, Great Britain, 1965.
[43] Hibbitt, Comput. struct. 3 pp 1145– (1973)
[44] Andersson, Trans. ASME 100 pp 356– (1978) · doi:10.1115/1.3439441
[45] Rybicki, J. Pressure Vessel Technol 100 pp 256– (1978) · doi:10.1115/1.3454464
[46] Rybicki, J. Pressure Vessel Technol. 101 pp 149– (1979) · doi:10.1115/1.3454614
[47] ’Models of stresses and deformation due to welding–A review’, in and , (eds.)., Modeling of Casting and Welding Processes, Rindge, NH, The Metallurgical Society of AIME, 1980, pp. 245-257.
[48] Argyris, Comput. Methods Appl. Mech. Eng. 33 pp 635– (1982)
[49] Goldak, Metal. Trans. B 15B pp 299– (1984)
[50] and , ’Computational thermal analysis of welds: current status and future directions’, in and , (eds.), J Modeling of Casting and Weldin Processes IV, The Minerals and Materials Society, Palm Coast, FL, 1988, pp. 153-166.
[51] Tekriwal, AWS Welding J. Res. Suppl. 67 pp 150s– (1988)
[52] Goldak, Can. Metal. Quart. 32 pp 49– (1993) · doi:10.1179/000844393795544168
[53] and , ’Prediction of distortion and residual stresses in panel welds’, in Computer modelling of Fabrication Processess and Constitutive Behaviour of Metals, Ottawa, Ontario, 1986, pp. 547-561.
[54] ’Three-dimensional transient thermo-elasto-plastic modeling of gas metal arc welding using the finite element method’, Ph.D. thesis, The University of Illinois at Urbana-Champaign, Department of Mechanical and Industral Engineering, Urbana, IL, 1989.
[55] Oddy, Eur. J. Mech. A/Solids 9 pp 253– (1990)
[56] Chidiac, Metal. Trans. B 23B pp 841– (1992)
[57] , , and , ’Finite element modeling of a single-pass GMA weldment’, in and , (eds.), Modeling of Casting, Welding and Advanced Solidification Processes VI, Palm Coast, FL, The Minerals and Materials Society, 1993, pp. 593-600.
[58] Sluzalec, Int. J. Solids Struct. 25 pp 23– (1989)
[59] Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1982.
[60] and , Finite Elements in Plasticity Theory and Practice, Pineridge Press, Swansea, 1980. · Zbl 0482.73051
[61] Pedersen, Commun. appl. numer. methods. 3 pp 541– (1987)
[62] and , Plasticity for Structural Engineers, Springer, New York, 1988. · Zbl 0666.73010 · doi:10.1007/978-1-4612-3864-5
[63] Plasticity Theory, Macmillan, New York, 1990. · Zbl 0745.73006
[64] The Thermomechanics of Plasticity and Fracture, Cambridge University Press, New York, 1992. · Zbl 0753.73001 · doi:10.1017/CBO9781139172400
[65] Braudel, Comput. Struct. 22 pp 801– (1986)
[66] PDA Engineering, Patran Plus User’s Manuals Vols I and II, Software Products Division, Costa Mesa, CA, 1990.
[67] PDA Engineering, Patran Command Language Guide, Software Products Division, Costa Mesa, CA, 1990.
[68] ’Mechanical, physical and thermal data for modeling the solidification processing of steels’, in and , (eds.), Modeling of Casting and Welding Processes, Rindge, NH, The Metallurgical Society of AIME, 1980, pp. 245-257.
[69] The British Iron and Steel Research Association, (eds.), Physical Constants of Some Commercial Steels at Elevated Temperatures, Butterworths Scientific Publications, London, 1953.
[70] Raymond, Trans. Metal. Soc. AIME 239 pp 630– (1967)
[71] FIDAP Theoretical Manual, Fluid Dynamics International, Evanston, IL, 1987.
[72] Elements of Structural Optimization, 3rd edn., Kluwer, Boston, 1991.
[73] Michel, Trans. ASME 77 pp 151– (1955)
[74] Mizukami, Tetsu-to-Hagane (Iron and Steel) 63 pp 1977–
[75] Hill, Proc. ASTM 61 pp 890– (1961)
[76] ed., Metals Reference Book, 5th edn., Butterworths, London, 1976.
[77] VMA Engineering. DOT User’s Manual, Version 3.00, Vanderplaats, Miura and Associates, Goleta, CA. 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.