×

Computation of the coupled thermo-optical scattering properties of random particulate systems. (English) Zbl 1135.78016

The paper is devoted to the analysis of the overall scattering behavior of light by aggregates of randomly distributed particles. In view of this, a ray-tracing algorithm and a stochastic genetic algorithm are presented to treat coupled inverse optical scattering formulations. In here, particulate volume fractions, refractive indices and thermal constants are sought so that the overall response of a sample of randomly distributed particles would match desired coupled scattering, thermal and infrared responses. To illustrate the overall procedure, large-scale numerical simulations are also presented.

MSC:

78M25 Numerical methods in optics (MSC2010)
78A45 Diffraction, scattering
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A05 Geometric optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Behringer, R. P., The dynamics of flowing sand, Nonlinear Sci. Today, 3, 1 (1993) · Zbl 0800.73003
[2] Behringer, R. P.; Baxter, G. W., Pattern formation, complexity & time-dependence in granular flows, (Mehta, A., Granular Matter—An Interdisciplinary Approach (1993), Springer-Verlag: Springer-Verlag New York), 85-119
[3] Behringer, R. P.; Miller, B. J., Stress fluctuations for sheared 3D granular materials, (Behringer, R.; Jenkins, J., Proceedings, Powders & Grains 97 (1997), Balkema: Balkema Amsterdam), 333-336
[4] Behringer, R. P.; Howell, D.; Veje, C., Fluctuations in granular flows, Chaos, 9, 559-572 (1999) · Zbl 1055.74507
[5] Berezin, Y. A.; Hutter, K.; Spodareva, L. A., Stability properties of shallow granular flows, Int. J. Nonlinear Mech., 33, 4, 647-658 (1998) · Zbl 0906.76017
[6] C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles. Wiley Science Paperback Series, 1998.; C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles. Wiley Science Paperback Series, 1998.
[7] Charalampopoulos, T. T.; Shu, G., Optical properties of combustion-synthesized iron oxide aggregates, Appl. Opt., 42, 19, 3957-3969 (2003)
[8] Charalampopoulos, T. T.; Shu, G., Effects of polydispersity of chainlike aggregates on light-scattering properties and data inversion, Appl. Opt., 41, 4, 723-733 (2002)
[9] Chokshi, A.; Tielens, A. G.G. M.; Hollenbach, D., Dust coagulation, Astrophys. J., 407, 806-819 (1993)
[10] Davis, L., Handbook of Genetic Algorithms (1991), Thompson Computer Press
[11] Dominik, C.; Tielens, A. G.G. M., The physics of dust coagulation & the structure of dust aggregates in space, Astrophys. J., 480, 647-673 (1997)
[12] Donev, A.; Cisse, I.; Sachs, D.; Variano, E. A.; Stillinger, F.; Connelly, R.; Torquato, S.; Chaikin, P., Improving the density of jammed disordered packings using ellipsoids, Science, 303, February, 990-993 (2004)
[13] Donev, A.; Torquato, S.; Stillinger, F., Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles—I. Algorithmic details, J. Comput. Phys., 202, 737 (2005) · Zbl 1067.82061
[14] Donev, A.; Torquato, S.; Stillinger, F., Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles—II: Application to ellipses and ellipsoids, J. Comput. Phys., 202, 765 (2005) · Zbl 1067.82062
[15] W.C. Elmore, M.A. Heald, Physics of Waves, Dover Publications re-issue, 1985.; W.C. Elmore, M.A. Heald, Physics of Waves, Dover Publications re-issue, 1985.
[16] Kansaal, A.; Torquato, S.; Stillinger, F., Diversity of order and densities in jammed hard-particle packings, Phys. Rev. E, 66, 041109 (2002)
[17] Gray, J. M.N. T.; Wieland, M.; Hutter, K., Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R Soc. Lond. A, 455, 1841-1874 (1999) · Zbl 0951.76091
[18] Gray, J. M.N. T.; Hutter, K., Pattern formation in granular avalanches, Continuum Mech. Thermodyn., 9, 341-345 (1997)
[19] Gray, J. M.N. T., Granular flow in partially filled slowly rotating drums, J. Fluid Mech., 441, 1-29 (2001) · Zbl 1097.76603
[20] Holland, J. H., Adaptation in Natural & Artificial Systems (1975), Ann Arbor, Mich. University of Michigan Press
[21] Gill, P.; Murray, W.; Wright, M., Practical optimization (1995), Academic Press: Academic Press London
[22] Goldberg, D. E., Genetic algorithms in search, optimization & machine learning (1989), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0721.68056
[23] Goldberg, D. E.; Deb, K., Special issue on Genetic Algorithms. Special issue on Genetic Algorithms, Comput. Methods Appl. Mech. Engrg., 186, 2-4, 121-124 (2000)
[24] Greve, R.; Hutter, K., Motion of a granular avalanche in a convex & concave curved chute: experiments & theoretical predictions, Philos. Trans. R Soc. Lond. A, 342, 573-600 (1993)
[25] Hutter, K., Avalanche dynamics, (Singh, V. P., Hydrology of Disasters (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 317-394
[26] Hutter, K.; Koch, T.; Plüss, C.; Savage, S. B., The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments, Acta Mech., 109, 127-165 (1995)
[27] Hutter, K.; Rajagopal, K. R., On flows of granular materials, Continuum Mech. Thermodynam., 6, 81-139 (1994) · Zbl 0804.73003
[28] Hutter, K.; Siegel, M.; Savage, S. B.; Nohguchi, Y., Two-dimensional spreading of a granular avalanche down an inclined plane. Part I: Theory, Acta Mech., 100, 37-68 (1993) · Zbl 0821.73002
[29] Jaeger, H. M.; Nagel, S. R., La Physique de l’Etat Granulaire, La Recherche, 249, 1380 (1992)
[30] Jaeger, H. M.; Nagel, S. R., Physics of the granular state, Science, 255, 1523 (1992)
[31] Jaeger, H. M.; Nagel, S. R., La Fisica del Estado Granular, Mundo Cientifico, 132, 108 (1993)
[32] Jaeger, H. M.; Knight, J. B.; Liu, C. H.; Nagel, S. R., What is shaking in the sand box?, Mater. Res. Soc. Bull., 19, 25 (1994)
[33] Jaeger, H. M.; Nagel, S. R.; Behringer, R. P., The physics of granular materials, Phys. Today, 4, 32 (1996)
[34] Jaeger, H. M.; Nagel, S. R.; Behringer, R. P., Granular solids, liquids & gases, Rev. Mod. Phys., 68, 1259 (1996)
[35] Jaeger, H. M.; Nagel, S. R., Dynamics of granular material, Am. Sci., 85, 540 (1997)
[36] Jenkins, J. T.; Strack, O. D.L., Mean-field inelastic behavior of random arrays of identical spheres, Mech. Mater., 16, 25-33 (1993)
[37] Jenkins, J. T.; Ragione, L., La particle spin in anisotropic granular materials, Int. J. Solids Struct., 38, 1063-1069 (1999) · Zbl 1007.74031
[38] Jenkins, J. T.; Koenders, M. A., The incremental response of random aggregates of identical round particles, Eur. Phys. J. E—Soft Matter., 13, 113-123 (2004)
[39] Jenkins, J. T.; Johnson, D.; La Ragione, L.; Makse, H., Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres, J. Mech. Phys. Solids, 53, 197-225 (2005) · Zbl 1084.74041
[40] Kennedy, J.; Eberhart, R., Swarm Intelligence (2001), Morgan Kaufmann Publishers: Morgan Kaufmann Publishers Los Altos, CA
[41] Koch, T.; Greve, R.; Hutter, K., Unconfined flow of granular avalanches along a partly curved surface. II. Experiments & numerical computations, Proc. R Soc. Lond. A, 445, 415-435 (1994) · Zbl 0825.76573
[42] Lagaros, N.; Papadrakakis, M.; Kokossalakis, G., Structural optimization using evolutionary algorithms, Comput. Struct., 80, 571-589 (2002)
[43] Liu, C. H.; Jaeger, H. M.; Nagel, S. R., Finite size effects in a sandpile, Phys. Rev. A, 43, 7091 (1991)
[44] Liu, C. H.; Nagel, S. R., Sound in a granular material: disorder & nonlinearity, Phys. Rev. B, 48, 15646 (1993)
[45] Luenberger, D., Introduction to Linear and Nonlinear Programming (1974), Addison-Wesley: Addison-Wesley Menlo Park · Zbl 0272.90070
[46] Mitchell, P.; Frenklach, M., Particle aggregation with simultaneous surface growth, Phys. Rev. E, 67, 061407 (2003)
[47] Nagel, S. R., Instabilities in a sandpile, Rev. Modern Phys., 64, 321 (1992)
[48] Nye, J. F., Physical Properties of Crystals (1957), Oxford University Press: Oxford University Press Oxford · Zbl 0079.22601
[49] Onwubiko, C., Introduction to Engineering Design Optimization (2000), Prentice Hall: Prentice Hall Englewood Cliffs, NJ
[50] Papadrakakis, M.; Lagaros, N.; Thierauf, G.; Cai, J., Advanced solution methods in structural optimisation using evolution strategies, Engrg. Comput. J., 15, 1, 12-34 (1998) · Zbl 0935.74057
[51] Papadrakakis, M.; Lagaros, N.; Tsompanakis, Y., Structural optimization using evolution strategies and neutral networks, Comput. Methods Appl. Mech. Engrg., 156, 1, 309-335 (1998) · Zbl 0964.74045
[52] Papadrakakis, M.; Lagaros, N.; Tsompanakis, Y., Optimization of large-scale 3D trusses using evolution strategies and neural networks, Int. J. Space Struct., 14, 3, 211-223 (1999)
[53] Papadrakakis, M.; Tsompanakis, J.; Lagaros, N., Structural shape optimisation using evolution strategies, Enrg. Optim., 31, 515-540 (1999)
[54] Papadrakakis, M.; Lagaros, N.; Tsompanakis, Y.; Plevris, V., Large scale structural optimization: computational methods and optimization algorithms, Arch. Comput. Methods Engrg. State Art Rev., 8, 3, 239-301 (2001) · Zbl 1065.74053
[55] Tai, Y.-C.; Noelle, S.; Gray, J. M.N. T.; Hutter, K., Shock capturing & front tracking methods for granular avalanches, J. Comput. Phys., 175, 269-301 (2002) · Zbl 1168.76356
[56] Tai, Y.-C.; Gray, J. M.N. T.; Hutter, K.; Noelle, S., Flow of dense avalanches past obstructions, Ann. Glaciol., 32, 281-284 (2001)
[57] Tai, Y.-C.; Noelle, S.; Gray, J. M.N. T.; Hutter, K., An accurate shock-capturing finite-difference method to solve the Savage-Hutter equations in avalanche dynamics, Ann. Glaciol., 32, 263-267 (2001)
[58] Telford, W. M.; Geldart, L. P.; Sheriff, R. E., Applied Geophysics (1990), Cambridge University Press: Cambridge University Press Cambridge
[59] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0988.74001
[60] H.C. van de Hulst, Light Scattering by Small Particles, Dover Publications re-issue, 1981.; H.C. van de Hulst, Light Scattering by Small Particles, Dover Publications re-issue, 1981.
[61] Widom, B., Random sequential addition of hard spheres to a volume, J. Chem. Phys., 44, 3888-3894 (1966)
[62] Wieland, M.; Gray, J. M.N. T.; Hutter, K., Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature, J. Fluid Mech., 392, 73-100 (1999) · Zbl 0938.76588
[63] Zohdi, T. I., An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids, Int. J. Numer. Methods Engrg., 53, 1511-1532 (2002) · Zbl 1114.74496
[64] Zohdi, T. I., Computational design of swarms, Int. J. Numer. Methods Engrg., 57, 2205-2219 (2003) · Zbl 1032.92035
[65] Zohdi, T. I., Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids, Comput. Methods Appl. Mech. Engrg., 193, 6-8, 679-699 (2004) · Zbl 1060.74528
[66] Zohdi, T. I., Genetic optimization of statistically uncertain microheterogeneous solids, Philos. Trans. R Soc. Math. Phys. Engrg. Sci., 361, 1806, 1021-1043 (2003) · Zbl 1134.74353
[67] Zohdi, T. I., Modeling and direct simulation of near-field granular flows, Int. J. Solids Struct., 42, 2, 539-564 (2004) · Zbl 1081.74012
[68] Zohdi, T. I., A computational framework for agglomeration in thermo-chemically reacting granular flows, Proc. R Soc., 460, 3421-3445 (2004) · Zbl 1070.76057
[69] Zohdi, T. I., Charge-induced clustering in multifield granular flow, Int. J. Numer. Methods Engrg., 62, 7, 870-898 (2005) · Zbl 1161.74355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.