The simultaneous use of \(4\times 4\) and \(2\times 2\) bilinear stress elements for viscoelastic flows. (English) Zbl 0775.76094


76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
Full Text: DOI


[1] Acharya, A.; Mashelkar, R. A.; Ulbrecht, J.: Flow of inelastic and viscoelastic fluids past a sphere. I Drag coefficient in creeping and boundary-layer flows. Rheol. Acta. 15, 454-470
[2] Babuska, I. (1973): The finite element method with Lagrange multipliers. Numer. Math. 20, 179-192 · Zbl 0258.65108
[3] Brezzi, F. (1974): On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Num. Analysis. 8-R2, 129-151 · Zbl 0338.90047
[4] Brooks, A. N.; Hughes, T. J. R. (1982): Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng. 32, 199-259 · Zbl 0497.76041
[5] Broadbent, J. M.; Mena, B. (1974): Slow flow of an elasto-viscous fluid past cylinders and spheres. Chem. Eng. J. 8, 11-19
[6] Carew, E. O. A.; Townsend, P. (1988): Non-Newtonian flow past a sphere in a long cylindrical tube. Rheol. Acta. 27, 125-129 · Zbl 0668.76006
[7] Caswell, B.; Schwarz, W. H. (1962): The creeping motion of a non-Newtonian fluid past a sphere. J. Fluid Mech. 13, 417-426 · Zbl 0116.41804
[8] Chhabra, R. P.; Uhlherr, P. H. T.; Boger, D. V. (1980): The influence of fluid elasticity on the drag coefficient of spheres. J. Non-Newtonian Fluid Mech. 6, 187-199
[9] Chhabra, R. P.; Uhlherr, P. H. T. (1988): The influence of fluid elasticity on wall effects for creeping sphere motion in cylindrical tubes. Can. J. Chem. Eng. 66, 154-157
[10] Chilcott, M. D.; Rallison, J. M. (1988): Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381-432 · Zbl 0669.76016
[11] Chmielewski, C.; Nichols, K. L.; Jayaraman, K. (1990): A comparison of the drag coefficients of spheres translating in corn-syrup-based and polybutene-based Boger fluids. J. Non-Newtonian Fluid Mech. 35, 37-47
[12] Crochet, M. J.; Davies, A. R.; Walters, K. (1984). Numerical simulation of non-Newtonian flow. Elsevier, New York and Amsterdam · Zbl 0583.76002
[13] Crochet, M. J. (1989): Numerical simulation of viscoelastic flow: a review. In: Rubber Chemistry and Technology, Rubber Reviews. Amer. Chem. Soc. 62, 426-455
[14] Crochet, M. J.; Delvaux, V.; Marchal, J. M. (1990): Numerical simulation of highly viscoelastic flows through an abrupt contraction. J. Non-Newtonian Fluid Mech. 34, 261-268
[15] Crochet, M. J.; Legat, V. (1992): The consistent streamline-upwind/Petrov-Galerkin method for viscoelastic flow revisited. J. Non-Newtonian Fluid Mech. 42, 283-299 · Zbl 0825.76055
[16] Fortin, M.; Pierre, R. (1989): On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comp. Meth. Appl. Mech. Eng. 73, 341-350 · Zbl 0692.76002
[17] Gervang, B.; Davies, A. R.; Phillips, T. N. (1992): On the simulation of viscoelastic flow past a sphere using spectral methods. Int. J. Numer. Methods. Fluids. (to appear) · Zbl 0761.76008
[18] Giesekus, H. (1963): Rheol. Acta. 3, 59 · Zbl 0136.45203
[19] Harlen, O. G. (1990): High-Deborah-number flow of a dilute polymer solution past a sphere falling along the axis of a cylindrical tube. J. Non-Newtonian Fluid Mech. 37, 157-173 · Zbl 0713.76013
[20] Hassager, O.; Bisgaard, C. (1983): A Lagrangian finite element method for the simulation of flow on non-Newtonian liquids. J. Non-Newtonian Fluid Mech. 12, 153-164 · Zbl 0513.76004
[21] Keunings, R. (1989): Simulation of viscoelastic fluid flow. In: Tucker, III, C.L. (ed): Chapter 9 in Fundamentals of computer modeling for polymer processing. Hanser Publishers, Munich. 403-469
[22] Leslie, F. M. (1961): The slow flow of a visco-elastic liquid past a sphere. Quart. J. Mech. Appl. Math. 14, 36-48 · Zbl 0107.19603
[23] Lunsmann, W.; Brown, R. A.; Armstrong, R. C. (1992): J. Non-Newtonian Fluid Mech. (to appear)
[24] Marchal, J. M.; Crochet, M. J.; Keunings, R. (1984): Adaptive refinement for calculating viscoelastic flows. In: Carey, G. F.; Oden, J. T. (eds): Proceedings of the Fifth International Symposium on Finite Elements and Flow Problems. Austin, Texas, January. 473-478
[25] Marchal, J. M.; Crochet, M. J. (1987): A new mixed finite element for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. 26, 77-114 · Zbl 0637.76009
[26] Mena, B.; Caswell, B. (1974): Slow flow of an elastic-viscous fluid past an immersed body. Chem. Eng. J. 8, 125-134
[27] Mena, B.; Manero, O.; Leal, L. G. (1987): The influence of rheological properties on the slow flow past spheres. J. Non-Newtonian Fluid Mech. 26, 247-275
[28] Sugeng, F.; Tanner, R. I. (1986): The drag on spheres in viscoelastic fluids with significant wall effects. J. Non-Newtonian Fluid Mech. 20, 281-292
[29] Tiefenbruck, G.; Leal, L. G. (1982): A numerical study of the motion of a viscoelastic fluid past rigid spheres and spherical bubbles. J. Non-Newtonian Fluid Mech. 10, 115-155 · Zbl 0492.76007
[30] Tirtaatmadja, V.; Uhlherr, P. H. T.; Sridhar, T. (1990): Creeping motion of spheres in fluid M1. J. Non-Newtonian Fluid Mech. 35, 327-337
[31] Zheng, R.; Phan-Thien, N.; Tanner, R. I. (1990): On the flow past a sphere in a cylindrical tube: limiting Weissenberg number. J. Non-Newtonian Fluid Mech. 36, 27-49
[32] Zheng, R.; Phan-Thien, N.; Tanner, R. I. (1991): On the flow past a sphere in a cylindrical tube: effects of inertia, shear-thinning and elasticity. Rheol. Acta. 30, 499-510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.