×

The neural particle method - an updated Lagrangian physics informed neural network for computational fluid dynamics. (English) Zbl 1506.76136

Summary: Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years [I. E. Lagaris et al., “Artificial neural networks for solving ordinary and partial differential equations”, IEEE Trans. Neural Netw. 9, No. 5, 987–1000 (1998; doi:10.1109/72.712178)], it is only recently that an approach for the solution of time dependent problems has been developed [M. Raissi et al., J. Comput. Phys. 378, 686–707 (2019; Zbl 1415.68175)]. With the latter, implicit Runge-Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular.

MSC:

76M28 Particle methods and lattice-gas methods
76Bxx Incompressible inviscid fluids

Citations:

Zbl 1415.68175
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Patankar, S. V., Numerical heat transfer and fluid flow, (Series in computational methods in mechanics and thermal sciences (1980), Hemisphere Publ. Co: Hemisphere Publ. Co New York) · Zbl 0521.76003
[2] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225 (1981) · Zbl 0462.76020
[3] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8, R2, 129-151 (1974) · Zbl 0338.90047
[4] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253 (1974) · Zbl 0292.76018
[5] Tezduyar, T. E.; Mittal, S.; Ray, S. E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. Methods Appl. Mech. Engrg., 95, 2, 221-242 (1992) · Zbl 0756.76048
[6] Braess, H.; Wriggers, P., Arbitrary Lagrangian Eulerian finite element analysis of free surface flow, Comput. Methods Appl. Mech. Engrg., 190, 1-2, 95-109 (2000) · Zbl 0967.76053
[7] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013 (1977)
[8] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 3, 375-389 (1977) · Zbl 0421.76032
[9] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) Methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 1-2, 113-154 (1997) · Zbl 0883.65088
[10] Lind, S. J.; Xu, R.; Stansby, P. K.; Rogers, B. D., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys., 231, 4, 1499-1523 (2012) · Zbl 1286.76118
[11] Li, B.; Habbal, F.; Ortiz, M., Optimal transportation meshfree approximation schemes for fluid and plastic flows, Internat. J. Numer. Methods Engrg., 83, 12, 1541-1579 (2010) · Zbl 1202.74200
[12] Weißenfels, C.; Wriggers, P., Stabilization algorithm for the optimal transportation meshfree approximation scheme, Comput. Methods Appl. Mech. Engrg., 329, 421-443 (2018) · Zbl 1439.65123
[13] Ganzenmüller, G. C.; Hiermaier, S.; May, M., On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics, Comput. Struct., 150, 71-78 (2015)
[14] Li, S.; Liu, W. K., Meshfree Particle Methods (2007), Springer: Springer Berlin, Heidelberg, New York
[15] Franca, L. P.; Hughes, T. J.R., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69, 1, 89-129 (1988) · Zbl 0629.73053
[16] Brezzi, F.; Franca, L. P.; Hughes, T. J.R.; Russo, A., Stabilization techniques and subgrid scales capturing, (Duff, I. S., The State of the Art in Numerical Analysis. The State of the Art in Numerical Analysis, The Institute of Mathematics and its Applications Conference Series (1997), Oxford University Press: Oxford University Press Oxford), 391-406 · Zbl 0881.65100
[17] Oñate, E.; García, J., A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation, Comput. Methods Appl. Mech. Engrg., 191, 6-7, 635-660 (2001) · Zbl 0996.76052
[18] Hughes, T. J.R.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[19] Erichson, N. B.; Mathelin, L.; Yao, Z.; Brunton, S. L.; Mahoney, M. W.; Kutz, J. N., Shallow learning for fluid flow reconstruction with limited sensors and limited data (2019), arXiv preprint arXiv:1902.07358
[20] Raissi, M.; Yazdani, A.; Karniadakis, G. E., Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Science, 367, 6481, 1026-1030 (2020), URL https://science.sciencemag.org/content/367/6481/1026 · Zbl 1478.76057
[21] Kutz, J. N., Deep learning in fluid dynamics, J. Fluid Mech., 814, 1-4 (2017) · Zbl 1383.76380
[22] Chatterjee, A., An introduction to the proper orthogonal decomposition, Current Sci., 808-817 (2000)
[23] Hinton, G. E.; Salakhutdinov, R. R., Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006), URL https://science.sciencemag.org/content/313/5786/504 · Zbl 1226.68083
[24] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Comput., 9, 8, 1735-1780 (1997)
[25] Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. K., Neural ordinary differential equations, (Advances in Neural Information Processing Systems (2018)), 6571-6583
[26] Maulik, R.; Mohan, A.; Lusch, B.; Madireddy, S.; Balaprakash, P.; Livescu, D., Time-series learning of latent-space dynamics for reduced-order model closure, Physica D, 405, 132368 (2020) · Zbl 07477434
[27] Brunton, S. L.; Noack, B. R.; Koumoutsakos, P., Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 52, 477-508 (2020) · Zbl 1439.76138
[28] Mohan, A. T.; Lubbers, N.; Livescu, D.; Chertkov, M., Embedding hard physical constraints in neural network coarse-graining of 3d turbulence (2020), arXiv preprint arXiv:2002.00021
[29] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2, 4, 303-314 (1989) · Zbl 0679.94019
[30] Leshno, M.; Lin, V. Y.; Pinkus, A.; Schocken, S., Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Netw., 6, 6, 861-867 (1993)
[31] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 5, 987-1000 (1998)
[32] Griewank, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentation (2008), SIAM: SIAM Philadelphia, Pennsylvania · Zbl 1159.65026
[33] Korelc, J.; Wriggers, P., Automation of Finite Element Methods (2016), Springer: Springer Cham, Switzerland · Zbl 1367.74001
[34] Lagaris, I. E.; Likas, A. C.; Papageorgiou, D. G., Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw., 11, 5, 1041-1049 (2000)
[35] Berg, J.; Nyström, K., A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing, 317, 28-41 (2018)
[36] Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh, V. M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Engrg., 362, 112790 (2020) · Zbl 1439.74466
[37] Nguyen-Thanh, V. M.; Zhuang, X.; Rabczuk, T., A deep energy method for finite deformation hyperelasticity, Eur. J. Mech. A Solids, 80, 103874 (2020) · Zbl 1472.74213
[38] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[39] Iserles, A., (A First Course in the Numerical Analysis of Differential Equations. A First Course in the Numerical Analysis of Differential Equations, Cambridge texts in applied mathematics, vol. 44 (2012), Cambridge University Press: Cambridge University Press Cambridge)
[40] Hairer, E.; Wanner, G., Stiff and differential-algebraic problems, (Springer series in computational mathematics, vol. 14 (2010), Springer: Springer Berlin) · Zbl 1192.65097
[41] Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization (2014), arxiv:1412.6980v9
[42] Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., 45, 1-3, 503-528 (1989) · Zbl 0696.90048
[43] Magnus, K.; Popp, K.; Sextro, W., Schwingungen: Physikalische Grundlagen und mathematische Behandlung von Schwingungen; mit 68 Aufgaben mit Lösungen, (Lehrbuch (2013), Springer Vieweg: Springer Vieweg Wiesbaden)
[44] Ferziger, J. H.; Perić, M., Computational Methods for Fluid Dynamics (2002), Springer: Springer Berlin and New York · Zbl 0998.76001
[45] Wriggers, P., Nonlinear Finite Element Methods (2008), Springer: Springer Berlin, Heidelberg · Zbl 1153.74001
[46] Ramaswamy, B., Numerical simulation of unsteady viscous free surface flow, J. Comput. Phys., 90, 2, 396-430 (1990) · Zbl 0701.76036
[47] Radovitzky, R.; Ortiz, M., Lagrangian finite element analysis of Newtonian fluid flows, Internat. J. Numer. Methods Engrg., 43, 4, 607-619 (1998) · Zbl 0945.76047
[48] Oñate, E.; Idelsohn, S. R.; Del Pin, F.; Aubry, R., The particle finite element method: An overview, Int. J. Comput. Methods, 01, 02, 267-307 (2004) · Zbl 1182.76901
[49] Spencer, A. J.M., Continuum Mechanics (2004), Dover: Dover London, New York, Longman · Zbl 1113.74002
[50] Ramaswamy, B.; Kawahara, M., Lagrangian finite element analysis applied to viscous free surface fluid flow, Internat. J. Numer. Methods Fluids, 7, 9, 953-984 (1987) · Zbl 0622.76031
[51] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 3, 421-434 (1996)
[52] Martin, J. C.; Moyce, W. J., Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. A, 244, 882, 312-324 (1952)
[53] Edelsbrunner, H.; Mücke, E. P., Three-dimensional alpha shapes, ACM Trans. Graph., 13, 1, 43-72 (1994) · Zbl 0806.68107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.