×

Superconvergent recovery of edge finite element approximation for Maxwell’s equations. (English) Zbl 1506.65231

Summary: A new recovery method of edge elements for Maxwell’s equations is proposed to reduce the recovery problem into one dimensional settings by using the local symmetry projection. The recovered method is applied to both Nédélec interpolation and edge finite element approximation. Superconvergence results are established for both the postprocessed Nédélec interpolation and the recovered edge finite element approximation in a discrete norm. Numerical examples are presented to illustrate our theoretical analysis.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nédélec, J. C., Mixed finite elements in \(R^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069
[2] Nédélec, J., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 1, 57-81 (1986) · Zbl 0625.65107
[3] Huang, Y.; Li, J.; Lin, Q., Superconvergence analysis for time dependent Maxwell’s equations in metamaterials, Numer. Methods Partial Differential Equations, 28, 6, 1794-1816 (2012) · Zbl 1252.78030
[4] Huang, Y.; Li, J.; Wu, C.; Yang, W., Superconvergence analysis for linear tetrahedral edge Elements, J. Sci. Comput., 62, 1, 122-145 (2014) · Zbl 1310.78015
[5] Huang, Y.; Li, J.; Wu, C., Averaging for superconvergence: Verification and application of 2D edge elements to Maxwell’s equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 255, 121-132 (2013) · Zbl 1297.78016
[6] Huang, Y.; Li, J.; Wu, C., Superconvergence analysis of second and third order rectangular edge elements with applications to Maxwell’s equations, Comput. Methods Appl. Mech. Eng., 329, 195-218 (2018) · Zbl 1439.65174
[7] Huang, Y.; Li, J.; Yang, W.; Sun, S., Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials, J. Comput. Phys., 230, 22, 8275-8289 (2011) · Zbl 1230.78029
[8] Lin, Q.; Li, J., Superconvergence analysis for Maxwell’s equations in dispersive media, Math. Comp., 77, 262, 757-771 (2008) · Zbl 1136.78015
[9] Lin, Q.; Yan, N., Global superconvergence for Maxwell’s equations, Math. Comp., 69, 229, 159-176 (2000) · Zbl 0945.65118
[10] Lin, J.; Lin, Q., Global Superconvergence of The mixed finite element methods for 2D Maxwell Equations, J. Comput. Math., 5, 637-646 (2003) · Zbl 1032.65101
[11] Monk, P., Finite Element Methods for Maxwell Equations (2003), Oxford University Press · Zbl 1024.78009
[12] Zhong, L.; Chen, L.; Shu, S.; Wittum, G.; Xu, J., Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations, Math. Comp., 81, 278, 623-642 (2012) · Zbl 1263.78012
[13] Babuška, I.; Strouboulis, T., The Finite Element Method and Its Reliability (2001), Oxford Science Publications · Zbl 0997.74069
[14] Bank, R.; Xu, J., Asymptotically Exact A posteriori error estimators, Part I: grids with superconvergence, SIAM J. Numer. Anal., 41, 6, 2294-2312 (2003) · Zbl 1058.65116
[15] Chen, C.; Huang, Y., High Accuracy Theory of Finite Element Methods (1995), Hunan, Science Press: Hunan, Science Press Hunan, China, (in Chinese)
[16] Wahlbin, L. B., Superconvergence in Galerkin Finite Element Methods (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0826.65092
[17] Zhang, Z.; Naga, A., A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput., 26, 1192-1213 (2005) · Zbl 1078.65110
[18] Bramble, J.; Schatz, A., Higher order local accuracy by averaging in the finite elementmethod, Math. Comp., 31, 74-111 (1977) · Zbl 0353.65064
[19] Huang, Y.; Yi, N., The superconvergent cluster recovery method, J. Sci. Comput., 44, 301-322 (2010) · Zbl 1203.65256
[20] Monk, P., Superconvergence of finite element approximations to Maxwell’s equations, Numer. Methods Partial Differential Equations, 10, 6, 793-812 (1994) · Zbl 0809.65124
[21] Brandts, J., Superconvergence of mixed finite element semi-discretizations of two time-dependent problems, Appl. Math., 44, 1, 43-53 (1999) · Zbl 1059.65518
[22] Lin, Q.; Lin, J., High accuracy approximation of mixed finite element for 2-d Maxwell’s Equations, Acta Math. Sci., 23, 4, 499-503 (2003) · Zbl 1051.65108
[23] Wu, C.; Huang, Y.; Lu, W.; Xiong, Z.; Yuan, J., Superconvergence for triangular linear edge elements, Commun. Comput. Phys., 25, 4, 1045-1070 (2019) · Zbl 1473.80011
[24] Wang, L.; Zhang, Q.; Zhang, Z., Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwell’s Equations, J. Sci. Comput., 78, 2, 1207-1230 (2019) · Zbl 1417.65208
[25] Naga, A.; Zhang, Z., A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42, 4, 1780-1800 (2004) · Zbl 1078.65098
[26] Huang, Y.; Jiang, K.; Yi, N., Some weighted averaging methods for gradient recovery, Adv. Appl. Math. Mech., 4, 131-155 (2014) · Zbl 1262.65154
[27] Huang, Y.; Liu, H.; Yi, N., Recovery of normal derivatives from the piecewise L2 projection, J. Comput. Phys., 231, 1230-1243 (2012) · Zbl 1408.65009
[28] Yi, N.; Huang, Y.; Yang, W., Function, derivative and high-Order derivatives recovery methods using the local symmetry projection, J. Sci. Comput., 74, 1, 536-572 (2018) · Zbl 1398.65024
[29] Chen, C., Structure Theory of Superconvergence of Finite Elements (2001), Hunan Science and Technology Press: Hunan Science and Technology Press Changsha, (In Chinese)
[30] Monk, P., A simple proof of convergence for an edge element discretization of Maxwell’s equations, (Computational Electromagnetics, Proc. GAMM Workshop, Proceedings of the GAMM Workshop on Computational Electromagnetics, Kiel, Germany, January (2001) 26-28 (Peter Monk, Carsten Carstensen, Stefan Funken, Wolfgang Hackbusch, Ronald H. W. Hoppe). Computational Electromagnetics, Proc. GAMM Workshop, Proceedings of the GAMM Workshop on Computational Electromagnetics, Kiel, Germany, January (2001) 26-28 (Peter Monk, Carsten Carstensen, Stefan Funken, Wolfgang Hackbusch, Ronald H. W. Hoppe), Lecture Notes in Computational Science and Engineering, vol. 28 (2003), Springer: Springer Berlin-Heidelberg-New York), 127-141 · Zbl 1031.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.