×

Strengthening the De Sitter swampland conjecture in warm inflation. (English) Zbl 1454.83164

Summary: The de Sitter constraint on the space of effective scalar field theories consistent with superstring theory provides a lower bound on the slope of the potential of a scalar field which dominates the evolution of the Universe, e.g., a hypothetical inflaton field. Whereas models of single scalar field inflation with a canonically normalized field do not obey this constraint, it has been claimed recently in the literature that models of warm inflation can be made compatible with it in the case of large dissipation. The de Sitter constraint is known to be derived from entropy considerations. Since warm inflation necessary involves entropy production, it becomes necessary to determine how this entropy production will affect the constraints imposed by the swampland conditions. Here, we generalize these entropy considerations to the case of warm inflation and show that the condition on the slope of the potential remains essentially unchanged and is, hence, robust even in the warm inflation dynamics. We are then able to conclude that models of warm inflation indeed can be made consistent with the swampland criteria.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83E30 String and superstring theories in gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.
81T12 Effective quantum field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117
[2] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
[3] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing Corner, PoSTASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].
[4] Palti, E., The Swampland: Introduction and Review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096
[5] Laliberte, S.; Brandenberger, R., String Gases and the Swampland, JCAP, 07, 046 (2020) · Zbl 1492.83099
[6] Brandenberger, R.; Vafa, C., Superstrings in the Early Universe, Nucl. Phys. B, 316, 391 (1989)
[7] Agrawal, P.; Obied, G.; Steinhardt, PJ; Vafa, C., On the Cosmological Implications of the String Swampland, Phys. Lett. B, 784, 271 (2018)
[8] Heisenberg, L.; Bartelmann, M.; Brandenberger, R.; Refregier, A., Dark Energy in the Swampland, Phys. Rev. D, 98, 123502 (2018)
[9] A. Berera, Warm inflation, Phys. Rev. Lett.75 (1995) 3218 [astro-ph/9509049] [INSPIRE]. · Zbl 1082.83037
[10] Berera, A.; Moss, IG; Ramos, RO, Warm Inflation and its Microphysical Basis, Rept. Prog. Phys., 72, 026901 (2009)
[11] Bastero-Gil, M.; Berera, A., Warm inflation model building, Int. J. Mod. Phys. A, 24, 2207 (2009) · Zbl 1170.83478
[12] Das, S., Note on single-field inflation and the swampland criteria, Phys. Rev. D, 99, 083510 (2019)
[13] Motaharfar, M.; Kamali, V.; Ramos, RO, Warm inflation as a way out of the swampland, Phys. Rev. D, 99, 063513 (2019)
[14] Das, S., Distance, de Sitter and Trans-Planckian Censorship conjectures: the status quo of Warm Inflation, Phys. Dark Univ., 27, 100432 (2020)
[15] Das, S., Warm Inflation in the light of Swampland Criteria, Phys. Rev. D, 99, 063514 (2019)
[16] Bastero-Gil, M.; Berera, A.; Hernández-Jiménez, R.; Rosa, JG, Warm inflation within a supersymmetric distributed mass model, Phys. Rev. D, 99, 103520 (2019)
[17] Kamali, V.; Motaharfar, M.; Ramos, RO, Warm brane inflation with an exponential potential: a consistent realization away from the swampland, Phys. Rev. D, 101, 023535 (2020)
[18] Berera, A.; Calderón, JR, Trans-Planckian censorship and other swampland bothers addressed in warm inflation, Phys. Rev. D, 100, 123530 (2019)
[19] Kamali, V., Non-minimal Higgs inflation in the context of warm scenario in the light of Planck data, Eur. Phys. J. C, 78, 975 (2018)
[20] Kamali, V., Warm pseudoscalar inflation, Phys. Rev. D, 100, 043520 (2019)
[21] Kamali, V., Reheating After Swampland Conjecture, JHEP, 01, 092 (2020)
[22] Das, S.; Goswami, G.; Krishnan, C., Swampland, axions, and minimal warm inflation, Phys. Rev. D, 101, 103529 (2020)
[23] Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C., Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B, 788, 180 (2019)
[24] Gibbons, GW; Hawking, SW, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D, 15, 2738 (1977)
[25] Bousso, R., A Covariant entropy conjecture, JHEP, 07, 004 (1999) · Zbl 0951.83011
[26] A. Bedroya and C. Vafa, Trans-Planckian Censorship and the Swampland, arXiv:1909.11063 [INSPIRE].
[27] Bedroya, A.; Brandenberger, R.; Loverde, M.; Vafa, C., Trans-Planckian Censorship and Inflationary Cosmology, Phys. Rev. D, 101, 103502 (2020)
[28] Aalsma, L.; Shiu, G., Chaos and complementarity in de Sitter space, JHEP, 05, 152 (2020) · Zbl 1437.85005
[29] A. Berera, S. Brahma and J.R. Calderón, Role of trans-Planckian modes in cosmology, arXiv:2003.07184 [INSPIRE].
[30] S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP11 (2019) 075 [arXiv:1807.05193] [INSPIRE].
[31] Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
[32] Bastero-Gil, M.; Berera, A.; Ramos, RO; Rosa, JG, Warm Little Inflaton, Phys. Rev. Lett., 117, 151301 (2016)
[33] Berera, A.; Mabillard, J.; Pieroni, M.; Ramos, RO, Identifying Universality in Warm Inflation, JCAP, 07, 021 (2018) · Zbl 1527.83041
[34] Moss, IG; Xiong, C., On the consistency of warm inflation, JCAP, 11, 023 (2008)
[35] del Campo, S.; Herrera, R.; Pavón, D.; Villanueva, JR, On the consistency of warm inflation in the presence of viscosity, JCAP, 08, 002 (2010)
[36] Bastero-Gil, M.; Berera, A.; Cerezo, R.; Ramos, RO; Vicente, GS, Stability analysis for the background equations for inflation with dissipation and in a viscous radiation bath, JCAP, 11, 042 (2012)
[37] Benetti, M.; Ramos, RO, Warm inflation dissipative effects: predictions and constraints from the Planck data, Phys. Rev. D, 95, 023517 (2017)
[38] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Towards a reliable effective field theory of inflation, arXiv:1907.13410 [INSPIRE].
[39] Bartrum, S.; Bastero-Gil, M.; Berera, A.; Cerezo, R.; Ramos, RO; Rosa, JG, The importance of being warm (during inflation), Phys. Lett. B, 732, 116 (2014) · Zbl 1360.83083
[40] Berghaus, KV; Graham, PW; Kaplan, DE, Minimal Warm Inflation, JCAP, 03, 034 (2020) · Zbl 1490.83073
[41] Lima, GBF; Ramos, RO, Unified early and late Universe cosmology through dissipative effects in steep quintessential inflation potential models, Phys. Rev. D, 100, 123529 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.