×

Existence of solutions of cancer invasion parabolic system with integrable data. (English) Zbl 1463.35322

Summary: In this work, we consider the model which describes the interactions of cancer cells with healthy cells and matrix degrading enzymes. This model consists of three unknown parameters namely cancer cell density, extra cellular matrix density and matrix degradation enzymes concentration. The main goal is to study the existence of weak-renormalized solutions for the considered chemotaxis-haptotaxis cancer invasion parabolic system under the assumptions of no growth conditions and integrable data.

MSC:

35K65 Degenerate parabolic equations
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ammar, K., Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differ. Equ., 147, 1-32 (2009) · Zbl 1182.35147
[2] Andreu, F., Igbida, N., Maz \(\acute{o}\) n, J.M., Toledo, J.: Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary conditions and \(L^1\) data, J. Differ. Equ., 244, 2764-2803 (2008) · Zbl 1145.35407
[3] Baghei, K.; Ghaemi, MB; Hesaaraki, M., Global existence of classical solutions to a cancer invasion model, Appl. Math., 3, 382-388 (2012)
[4] Bendahmane, M., Weak and classical solutions to predator-prey system with cross-diffusion, Nonlinear Anal., 73, 2489-2503 (2010) · Zbl 1197.35134
[5] Bendahmane, M.; Karlsen, KH, Renormalized solutions of anisotropic reaction diffusion-advection systems with \(L^1\) data modelling the propagation of an epidemic disease, Commun. Pure Appl. Anal., 5, 733-762 (2006) · Zbl 1134.35371
[6] Bendahmane, M.; Karlsen, KH, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations, SIAM J. Math. Anal., 36, 405-422 (2004) · Zbl 1090.35104
[7] Bendahmane, M.; Karlsen, KH, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media., 1, 185-218 (2006) · Zbl 1179.35162
[8] Bendahmane, M.; Langlais, M., A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease, J. Evol. Equ., 10, 883-904 (2010) · Zbl 1239.35065
[9] Bendahmane, M.; Langlais, M.; Saad, M., Existence of solutions for reaction-diffusion system with \(L^1\) data, Adv. Differ. Equ., 7, 743-768 (2002) · Zbl 1036.35086
[10] Bellomo, N.; Li, N.; Maini, PK, On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18, 593-646 (2008) · Zbl 1151.92014
[11] Bhuvaneswari, V.; Shangerganesh, L.; Balachandran, K., Global existence and blow up of solutions of quasilinear chemotaxis system, Math. Methods Appl. Sci., 38, 3738-3746 (2015) · Zbl 1375.35006
[12] Blanchard, D.; Guibe, O.; Redwane, H., Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities, Comm. Pure Appl. Math., 15, 197-217 (2016) · Zbl 1515.35095
[13] Blanchard, D.; Murat, F., Renormalized solutions of nonlinear parabolic problems with \(L^1\) data, existence and uniqueness, Proc. R. Soc. Edinburgh Sect. A, 127, 1137-1152 (1997) · Zbl 0895.35050
[14] Blanchard, D.; Murat, F.; Redwane, H., Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differ. Equ., 177, 331-374 (2001) · Zbl 0998.35030
[15] Boccardo, L.; Gallouet, T., On some nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87, 149-169 (1989) · Zbl 0707.35060
[16] Boccardo, L.; Orsina, L., Existence results for Dirichlet problems in \(L^1\) via Minty’s lemma, Appl. Anal., 76, 309-317 (2000) · Zbl 1034.35033
[17] Boccardo, L.; Porzio, MM; Primo, A., Summability and existence results for nonlinear parabolic equations, Nonlinear Anal., 71, 978-990 (2009) · Zbl 1171.35400
[18] Carrillo, J.; Wittbold, P., Renormalized entropy solutions of scalar conservation laws with boundary condition, J. Differ. Equ., 185, 137-160 (2002) · Zbl 1026.35069
[19] Cavalheiro, AC, The solvability of Dirichlet problem for a class of degenerate elliptic equations with \(L^1\)-data, Appl. Anal., 85, 941-961 (2006) · Zbl 1142.35042
[20] Chaplain, MAJ; Anderson, ARA, Mathematical modelling of tissue invasion. Cancer modelling and simulation (2003), London: Chapman & Hall/CRC, London
[21] Chaplain, MAJ; Lachowicz, M.; Szymańska, Z., Mathematical modelling of cancer invasion: The importance of cell-cell adhesion and cell-matrix adhesion, Math. Models Methods Appl. Sci., 21, 719-743 (2011) · Zbl 1221.35189
[22] Chaplain, MAJ; Lolas, G., Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Netw. Heterog. Media., 1, 399-439 (2006) · Zbl 1108.92023
[23] Climent, B., Existence of weak-renormalized solutions for a nonlinear system, Rev. Mat. Complut., 2, 571-583 (2002) · Zbl 1109.35311
[24] Dall \(\acute{A}\) glio, A., Giachetti, D., Leone, C., de Len, S. Segura: Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term, Ann. Inst. H. Poincare Anal. Non Lin \(\acute{e}\) aire, 23, 97-126 (2006) · Zbl 1103.35040
[25] Dall \(\acute{A}\) glio, A., Orsina, L.: Nonlinear parabolic equations with natural growth conditions and \(L^1\) data, Nonlinear Anal. TMA, 27, 59-73 (1996) · Zbl 0861.35045
[26] DiPerna, RJ; Lions, PL, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 130, 321-366 (1989) · Zbl 0698.45010
[27] Ganesan, S.; Lingeshwaran, S., A biophysical model of tumor invasion, Commun Nonlinear Sci Numer Simulat., 46, 135-152 (2017) · Zbl 1485.92050
[28] Gatenby, RA; Gawlinski, ET, A reaction-diffusion model of cancer invasion, Cancer Res., 56, 5745-5753 (1996)
[29] Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A., Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces, Nonlinear Anal. TMA., 129, 1-36 (2015) · Zbl 1331.35173
[30] Lewandowski, R.: Les \(\acute{e}\) quations de Stokes et de Navier-Stokes coupl \(\acute{e}\) es avec l’\( \acute{e}\) quation de l \(\acute{e}\) nergie cin \(\acute{e}\) tique turbulente, C. R. Acad. Sci. Paris: \(S \acute{e}\) rie I, 381, 1097-1102 (1994)
[31] Li, Z.; Gao, W., Existence of renormalized solutions to a nonlinear parabolic equation in \(L^1\) setting with nonstandard growth condition and gradient term, Math. Methods Appl. Sci., 38, 3043-3062 (2014) · Zbl 1329.35171
[32] Lowengrub, JS; Frieboes, HB; Jin, F.; Chuang, Y-L; Li, X.; Macklin, P.; Wise, SM; Cristini, V., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23, R1-R9 (2010) · Zbl 1181.92046
[33] Meral, G.; Surulescu, C., Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, J. Math. Anal. Appl., 408, 597-614 (2013) · Zbl 1306.92026
[34] Morales-Rodrigo, C., Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Model. Dyn. Syst., 47, 604-613 (2008) · Zbl 1157.35399
[35] Perumpanani, A.; Byrne, H., Extracellular matrix concentration exerts selection pressure on invasive cells, Eur. J. Cancer, 35, 1274-1280 (1999)
[36] Porretta, A., Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pur. Appl., 177, 143-172 (1999) · Zbl 0957.35066
[37] Shangerganesh, L.; Balachandran, K., Existence and uniqueness of solutions of predator-prey type model with mixed boundary conditions, Acta Appl. Math., 116, 71-86 (2011) · Zbl 1233.35121
[38] Shangerganesh, L.; Balachandran, K., Renormalized and entropy solutions of nonlinear parabolic systems, Electron. J. Differ. Equ., 268, 1-24 (2013) · Zbl 1288.35290
[39] Shangerganesh, L.; Balachandran, K., Solvability of reaction-diffusion model with variable exponents, Math. Methods Appl. Sci., 37, 1436-1448 (2014) · Zbl 1294.35179
[40] Shangerganesh, L.; Barani Balan, N.; Balachandran, K., Weak-renormalized solutions for predator-prey system, Appl. Anal., 92, 441-459 (2013) · Zbl 1263.35135
[41] Shangerganesh, L., Barani Balan, N, Balachandran, K.: Weak-renormalized solutions for three species competition model in ecology. Int. J. Biomath., 7, 1450062 (2014) (24 pages) · Zbl 1375.35580
[42] Shangerganesh, L.; Barani Balan, N.; Balachandran, K., Existence and uniqueness of solutions of degenerate chemotaxis system, Taiwan. J. Math., 18, 1605-1622 (2014) · Zbl 1357.35267
[43] Tao, Y., A free boundary problem modeling the cell cycle and cell movement in multi cellular tumor spheroids, J. Differ. Equ., 247, 49-68 (2009) · Zbl 1178.35387
[44] Tao, Y., Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. RWA, 12, 418-435 (2011) · Zbl 1205.35144
[45] Tao, Y.; Wang, M., Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21, 2221-2238 (2008) · Zbl 1160.35431
[46] Tao, Y.; Winkler, M., A chemotaxis-hatotaxis model: the roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43, 685-704 (2011) · Zbl 1259.35210
[47] Walker, C.; Webb, GF, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38, 1694-1713 (2007) · Zbl 1120.92024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.