×

zbMATH — the first resource for mathematics

Relation algebras of Sugihara, Belnap, Meyer, and Church. (English) Zbl 07271811
Summary: Algebras introduced by, or attributed to, Sugihara, Belnap, Meyer, and Church are representable as algebras of binary relations with set-theoretically defined operations. They are definitional reducts or subreducts of proper relation algebras. The representability of Sugihara matrices yields sound and complete set-theoretical semantics for \(R\)-mingle.
MSC:
03G15 Cylindric and polyadic algebras; relation algebras
03B47 Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Allen, James F., An interval-based representation of temporal knowledge, (Proceedings of the Seventh International Joint Conference on Artificial Intelligence. Proceedings of the Seventh International Joint Conference on Artificial Intelligence, IJCAI (1981)), 221-226
[2] Allen, James F., Towards a general theory of action and time, Artif. Intell., 23, 2, 123-154 (July 1984)
[3] Allen, James F., Maintaining knowledge about temporal intervals, Commun. ACM, 26, 11, 832-842 (November 1983)
[4] Anderson, Alan Ross; Belnap, Nuel D., Entailment. The Logic of Relevance and Necessity, vol. I (1975), Princeton University Press: Princeton University Press Princeton, NJ-London · Zbl 0323.02030
[5] Anderson, Alan Ross; Belnap, Nuel D.; Dunn, J. Michael, Entailment. The Logic of Relevance and Necessity, vol. II (1992), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0921.03025
[6] Andréka, Hajnal; Maddux, Roger D., Representations for small relation algebras, Notre Dame J. Form. Log., 35, 4, 550-562 (1994) · Zbl 0830.03033
[7] Avron, Arnon, RM and its nice properties, (J. Michael Dunn on Information Based Logics. J. Michael Dunn on Information Based Logics, Outst. Contrib. Log., vol. 8 (2016), Springer: Springer Cham), 15-43 · Zbl 1439.03047
[8] Badaloni, Silvana; Giacomin, Massimiliano, The algebra IA^fuz: a framework for qualitative fuzzy temporal reasoning, Artif. Intell., 170, 10, 872-908 (2006) · Zbl 1131.68530
[9] Balbiani, Philippe; Condotta, Jean-François; Ligozat, Gérard, On the consistency problem for the INDU calculus, J. Appl. Log., 4, 2, 119-140 (2006) · Zbl 1098.03038
[10] Beall, Jc; Brady, Ross; Dunn, J. Michael; Hazen, A. P.; Mares, Edwin; Meyer, Robert K.; Priest, Graham; Restall, Greg; Ripley, David; Slaney, John; Sylvan, Richard, On the ternary relation and conditionality, J. Philos. Log., 41, 3, 595-612 (2012) · Zbl 1260.03049
[11] Belnap, Nuel D., Entailment and relevance, J. Symb. Log., 25, 144-146 (1960) · Zbl 0107.00802
[12] Bimbo, K.; Dunn, J. M., The emergence of set-theoretical semantics for relevance logics around 1970, Proceedings of the Third Workshop. Proceedings of the Third Workshop, May 16-17, 2016, Edmonton, Canada. Proceedings of the Third Workshop. Proceedings of the Third Workshop, May 16-17, 2016, Edmonton, Canada, IfCoLog J. Log. Appl., 4, 3, 557-589 (2017)
[13] Bimbó, Katalin; Dunn, J. Michael, Generalized Galois Logics, CSLI Lecture Notes, vol. 188 (2008), CSLI Publications: CSLI Publications Stanford, CA · Zbl 1222.03001
[14] Bimbó, Katalin; Dunn, J. Michael; Maddux, Roger D., Relevance logics and relation algebras, Rev. Symb. Log., 2, 1, 102-131 (2009) · Zbl 1174.03005
[15] Bodirsky, Manuel, Finite relation algebras with normal representations, (Relational and Algebraic Methods in Computer Science. 17th International Conference. Relational and Algebraic Methods in Computer Science. 17th International Conference, RAMiCS 2018, Groningen, The Netherlands, October 29 - November 1, 2018, Proceedings (2018)) · Zbl 06975199
[16] Bodirsky, Manuel; Chen, Hubie, Qualitative temporal and spatial reasoning revisited, J. Log. Comput., 19, 6, 1359-1383 (2009) · Zbl 1185.68663
[17] Bodirsky, Manuel; Kára, Jan, A fast algorithm and datalog inexpressibility for temporal reasoning, ACM Trans. Comput. Log., 11, 3 (2010), Art. 15, 21 · Zbl 1351.68051
[18] Brady, Ross T., Depth relevance of some paraconsistent logics, Stud. Log., 43, 63-73 (1984) · Zbl 0581.03014
[19] Broxvall, Mathias, The point algebra for branching time revisited, (KI 2001: Advances in Artificial Intelligence (Vienna). KI 2001: Advances in Artificial Intelligence (Vienna), Lecture Notes in Comput. Sci., vol. 2174 (2001), Springer: Springer Berlin), 106-121 · Zbl 1007.68174
[20] Broxvall, Mathias; Jonsson, Peter, Point algebras for temporal reasoning: algorithms and complexity, Artif. Intell., 149, 2, 179-220 (2003) · Zbl 1082.68817
[21] Burgess, John P., Relevance: a fallacy?, Notre Dame J. Form. Log., 22, 2, 97-104 (1981) · Zbl 0438.03008
[22] Burgess, John P., Common sense and “relevance”, Notre Dame J. Form. Log., 24, 1, 41-53 (1983) · Zbl 0476.03006
[23] Burgess, John P., No requirement of relevance, (Shapiro, Stewart, Oxford Handbook of Philosophy of Mathematics and Logic (2005), Oxford University Press), 727-750
[24] Chin, Louise H.; Tarski, Alfred, Distributive and modular laws in the arithmetic of relation algebras, Univ. Calif. Publ. Math. (N. S.), 1, 341-384 (1951) · Zbl 0045.31701
[25] Condotta, Jean-François; Kaci, Souhila; Salhi, Yakoub, Optimization in temporal qualitative constraint networks, Acta Inform., 53, 2, 149-170 (2016) · Zbl 1336.68244
[26] Copeland, B. J., On when a semantics is not a semantics: some reasons for disliking the Routley-Meyer semantics for relevance logic, J. Philos. Log., 8, 4, 399-413 (1979) · Zbl 0416.03022
[27] Copeland, B. J., The trouble Anderson and Belnap have with relevance, Philos. Stud., 37, 4, 325-334 (1980)
[28] Copeland, B. J., What is a semantics for classical negation?, Mind, 95, 380, 478-490 (1986)
[29] Dunn, J. Michael, A Kripke-style semantics for R-mingle using a binary accessibility relation, Stud. Log., 35, 163-172 (1976) · Zbl 0328.02010
[30] Dunn, J. Michael, A representation of relation algebras using Routley-Meyer frames, (Logic, Meaning and Computation. Logic, Meaning and Computation, Synthese Lib., vol. 305 (2001), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 77-108 · Zbl 1039.03051
[31] Dunn, J. Michael, The relevance of relevance to relevance logic, (Logic and Its Applications. Logic and Its Applications, Lecture Notes in Comput. Sci., vol. 8923 (2015), Springer: Springer Heidelberg), 11-29 · Zbl 1304.03052
[32] Fine, Kit, Models for entailment, J. Philos. Log., 3, 347-372 (1974) · Zbl 0296.02013
[33] (Gabbay, Dov M.; Wansing, Heinrich, What Is Negation?. What Is Negation?, Applied Logic Series, vol. 13 (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0957.00012
[34] Gennari, Rosella, Temporal reasoning and constraint programming: a survey, Quart. - Cent. Wiskd. Inform., 11, 2-3, 163-214 (1998) · Zbl 0911.68155
[35] Gerevini, Alfonso, Incremental qualitative temporal reasoning: algorithms for the point algebra and the ORD-Horn class, Artif. Intell., 166, 1-2, 37-80 (2005) · Zbl 1132.68730
[36] Gerevini, Alfonso E.; Saetti, Alessandro, Computing the minimal relations in point-based qualitative temporal reasoning through metagraph closure, Artif. Intell., 175, 2, 556-585 (2011) · Zbl 1216.68266
[37] Givant, Steven, Advanced Topics in Relation Algebras—Relation Algebras, vol. 2 (2017), Springer: Springer Cham · Zbl 1436.03001
[38] Givant, Steven, Introduction to Relation Algebras—Relation Algebras, vol. 1 (2017), Springer: Springer Cham · Zbl 1426.03001
[39] Givant, Steven R., A portrait of Alfred Tarski, Math. Intell., 13, 3, 16-32 (1991) · Zbl 0733.01022
[40] Grün, Gabrielle Assunta, An efficient algorithm for the uniform maximum distance problem on a chain, Discrete Math. Theor. Comput. Sci., 4, 2, 323-350 (2001) · Zbl 0990.68141
[41] Henkin, Leon; Donald Monk, J.; Tarski, Alfred, Cylindric Algebras. Part I, Studies in Logic and the Foundations of Mathematics, vol. 64 (1985), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam, With an introductory chapter: General theory of algebras, Reprint of the 1971 original · Zbl 0576.03043
[42] Henkin, Leon; Tarski, Alfred, Cylindric algebras, (Proc. Sympos. Pure Math., vol. II (1961), American Mathematical Society: American Mathematical Society Providence, R.I.), 83-113
[43] Hirsch, Robin; Hodkinson, Ian, Relation Algebras by Games, Studies in Logic and the Foundations of Mathematics, vol. 147 (2002), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam, With a foreword by Wilfrid Hodges · Zbl 1018.03002
[44] Hirsch, Robin; Jackson, Marcel; Kowalski, Tomasz, Algebraic foundations for qualitative calculi and networks, Theor. Comput. Sci., 768, 99-116 (2019) · Zbl 1417.68160
[45] Iwata, Yoichi; Yoshida, Yuichi, Exact and approximation algorithms for the maximum constraint satisfaction problem over the point algebra, (30th International Symposium on Theoretical Aspects of Computer Science. 30th International Symposium on Theoretical Aspects of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 20 (2013), Schloss Dagstuhl. Leibniz-Zent. Inform.: Schloss Dagstuhl. Leibniz-Zent. Inform. Wadern), 127-138 · Zbl 1354.68292
[46] Jónsson, Bjarni; Tarski, Alfred, Representation problems for relation algebras, Bull. Am. Math. Soc., 54, 80 (1948), and 1192, Abstract 89
[47] Jónsson, Bjarni; Tarski, Alfred, Boolean algebras with operators. I, Am. J. Math., 73, 891-939 (1951) · Zbl 0045.31505
[48] Jónsson, Bjarni; Tarski, Alfred, Boolean algebras with operators. II, Am. J. Math., 74, 127-162 (1952) · Zbl 0045.31601
[49] Ladkin, Peter B.; Maddux, Roger D., On binary constraint problems, J. Assoc. Comput. Mach., 41, 3, 435-469 (1994) · Zbl 0813.03045
[50] Lyndon, Roger C., The representation of relational algebras, Ann. Math. (2), 51, 707-729 (1950) · Zbl 0037.29302
[51] Lyndon, Roger C., The representation of relation algebras. II, Ann. Math. (2), 63, 294-307 (1956) · Zbl 0070.24601
[52] Maddux, Roger D., Some varieties containing relation algebras, Trans. Am. Math. Soc., 272, 2, 501-526 (1982) · Zbl 0515.03039
[53] Maddux, Roger D., Relation Algebras, Studies in Logic and the Foundations of Mathematics, vol. 150 (2006), Elsevier B. V.: Elsevier B. V. Amsterdam · Zbl 1197.03051
[54] Maddux, Roger D., Relevance logic and the calculus of relations (abstract), (International Conference on Order, Algebra, and Logics. International Conference on Order, Algebra, and Logics, June 13, 2007 (2007), Vanderbilt University), 1-3
[55] Maddux, Roger D., Relevance logic and the calculus of relations, Rev. Symb. Log., 3, 1, 41-70 (2010) · Zbl 1198.03029
[56] McKenzie, Ralph Nelson Whitfield, The Representation of Relation Algebras (1966), University of Colorado at Boulder, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)
[57] McKinsey, J. C.C., Postulates for the calculus of binary relations, J. Symb. Log., 5, 85-97 (1940) · Zbl 0024.00201
[58] McKinsey, J. C.C., A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology, J. Symb. Log., 6, 117-134 (1941) · JFM 67.0974.01
[59] Meyer, Robert K.; Routley, Richard, Algebraic analysis of entailment. I, Log. Anal. (N.S.), 15, 407-428 (1972) · Zbl 0336.02020
[60] Meyer, Robert K.; Routley, Richard, Classical relevant logics. I, Stud. Log., 32, 51-68 (1973) · Zbl 0316.02029
[61] Meyer, Robert K.; Routley, Richard, Classical relevant logics. II, Stud. Log., 33, 183-194 (1974) · Zbl 0316.02030
[62] Mikulás, Szabolcs, Algebras of relations and relevance logic, J. Log. Comput., 19, 2, 305-321 (2009) · Zbl 1173.03048
[63] Navarrete, I.; Sattar, A.; Wetprasit, R.; Marin, R., On point-duration networks for temporal reasoning, Artif. Intell., 140, 1-2, 39-70 (2002) · Zbl 0999.68203
[64] Routley, R.; Routley, V.; Meyer, R. K.; Martin, E. P., On the philosophical bases of relevant logic semantics, J. Non-Class. Log., 1, 1, 71-105 (1982) · Zbl 0513.03002
[65] Routley, Richard, Alternative semantics for quantified first degree relevant logic, Stud. Log., 38, 2, 211-231 (1979) · Zbl 0406.03033
[66] Routley, Richard; Meyer, Robert K., The semantics of entailment. I, (Truth, Syntax and Modality. Truth, Syntax and Modality, Proc. Conf. Alternative Semantics, Temple Univ., Philadelphia, Pa., 1970. Truth, Syntax and Modality. Truth, Syntax and Modality, Proc. Conf. Alternative Semantics, Temple Univ., Philadelphia, Pa., 1970, Studies in Logic and the Foundations of Mathematics, vol. 68 (1973), North-Holland: North-Holland Amsterdam), 199-243
[67] Routley, Richard; Plumwood, Val; Meyer, Robert K.; Brady, Ross T., Relevant Logics and Their Rivals. Part I (1982), Ridgeview Publishing Co.: Ridgeview Publishing Co. Atascadero, CA, The basic philosophical and semantical theory · Zbl 0579.03011
[68] Schechter, Eric, Classical and Nonclassical Logics (2005), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1088.03004
[69] Sugihara, Takeo, Strict implication free from implicational paradoxes, (Memoirs of the Faculty of Liberal Arts, Fukei University, Series I (1955)), 55-59
[70] Sylvan, Richard; Meyer, Robert; Plumwood, Val; Brady, Ross, Relevant Logics and Their Rivals, vol. II, Western Philosophy Series, vol. 59 (2003), Ashgate Publishing Limited: Ashgate Publishing Limited Aldershot, A continuation of the work of Richard Sylvan, Robert Meyer, Val Plumwood and Ross Brady, Edited by Brady · Zbl 1398.03011
[71] Tarski, Alfred, Grundzüge des Systemenkalküls. I, Fundam. Math., 25, 503-526 (1935) · JFM 62.0038.01
[72] Tarski, Alfred, On the calculus of relations, J. Symb. Log., 6, 73-89 (1941) · Zbl 0026.24401
[73] Tarski, Alfred, Logic, Semantics, Metamathematics (1983), Hackett Publishing Co.: Hackett Publishing Co. Indianapolis, IN, Papers from 1923 to 1938, Translated by J. H. Woodger, Edited and with an introduction by John Corcoran
[74] van Benthem, Johan, Review: On when a semantics is not a semantics: some reasons for disliking the Routley-Meyer semantics for relevance logic, by B. J. Copeland, J. Symb. Log., 49, 994-995 (3 Sep. 1984)
[75] van Benthem, Johan, Language in Action (1995), MIT Press: MIT Press Cambridge, MA, Copublished with North-Holland, Amsterdam, Categories, lambdas and dynamic logic, Revised reprint of the 1991 original · Zbl 0743.03018
[76] van Benthem, Johan, Exploring Logical Dynamics, Studies in Logic, Language and Information (1996), CSLI Publications: CSLI Publications Stanford, CA, FoLLI: European Association for Logic, Language and Information, Amsterdam · Zbl 0873.03001
[77] (Wansing, Heinrich, Negation. A Notion in Focus. Proceedings Volume of an Interdisciplinary Workshop Held During the Conference Analyomen 2 of the Gesellschaft für Analytische Philosophie (GAP). Negation. A Notion in Focus. Proceedings Volume of an Interdisciplinary Workshop Held During the Conference Analyomen 2 of the Gesellschaft für Analytische Philosophie (GAP), Leipzig, Germany, September 7-10, 1994 (1996), De Gruyter: De Gruyter Berlin) · Zbl 0964.00034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.