Adamaszek, Michał; Adams, Henry; Gasparovic, Ellen; Gommel, Maria; Purvine, Emilie; Sazdanovic, Radmila; Wang, Bei; Wang, Yusu; Ziegelmeier, Lori On homotopy types of Vietoris-Rips complexes of metric gluings. (English) Zbl 07270220 J. Appl. Comput. Topol. 4, No. 3, 425-454 (2020). Reviewer: Yuichi Ike (Kawasaki) MSC: 55N31 55U10 68T09 55P15 05E45 PDF BibTeX XML Cite \textit{M. Adamaszek} et al., J. Appl. Comput. Topol. 4, No. 3, 425--454 (2020; Zbl 07270220) Full Text: DOI
Buchet, Mickaël; Escolar, Emerson G. Every 1D persistence module is a restriction of some indecomposable 2D persistence module. (English) Zbl 07270219 J. Appl. Comput. Topol. 4, No. 3, 387-424 (2020). MSC: 16G20 55N99 PDF BibTeX XML Cite \textit{M. Buchet} and \textit{E. G. Escolar}, J. Appl. Comput. Topol. 4, No. 3, 387--424 (2020; Zbl 07270219) Full Text: DOI
Catanzaro, Michael J.; Curry, Justin M.; Fasy, Brittany Terese; Lazovskis, Jānis; Malen, Greg; Riess, Hans; Wang, Bei; Zabka, Matthew Moduli spaces of Morse functions for persistence. (English) Zbl 07270218 J. Appl. Comput. Topol. 4, No. 3, 353-385 (2020). Reviewer: Marian Ioan Munteanu (Iaşi) MSC: 58D29 55N31 37D15 57M15 05C22 PDF BibTeX XML Cite \textit{M. J. Catanzaro} et al., J. Appl. Comput. Topol. 4, No. 3, 353--385 (2020; Zbl 07270218) Full Text: DOI
Bubenik, Peter; Wagner, Alexander Embeddings of persistence diagrams into Hilbert spaces. (English) Zbl 07270217 J. Appl. Comput. Topol. 4, No. 3, 339-351 (2020). Reviewer: Gregory C. Bell (Greensboro) MSC: 55N31 51F30 46C05 PDF BibTeX XML Cite \textit{P. Bubenik} and \textit{A. Wagner}, J. Appl. Comput. Topol. 4, No. 3, 339--351 (2020; Zbl 07270217) Full Text: DOI